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Maximum strength sets the limit of a material’s intrinsic resistance to permanent deformation. Its

significance, however, lies not in the highest strength value that a solid can possibly achieve, but rather in

how this quantity is degraded, from which one could decipher the underlying mechanisms of yielding in a

real material. A wide range of maximum strength values have been measured experimentally for metallic

glasses. However, the true maximum strength remains unknown to date. Here, using finite deformation

theory, we give the first theoretical estimate of the ultimate strength of metallic glasses. Our theoretical

results, along with those from experiment and simulation, lead us to several mechanisms of degradation of

the theoretical strength that are closely connected to correlated atomic motion with varying characteristic

length in real metallic glasses.

DOI: 10.1103/PhysRevLett.111.065507 PACS numbers: 62.20.F�, 61.43.Dq, 62.20.M�

Because of the presence of preexisting defects and
imperfections in a real crystalline metal, the yield stress
is much lower than that in a defect- or imperfection-free
sample. The yield stress of the perfect crystal is therefore
called the maximum strength, or theoretical strength, as it
is often obtained theoretically [1–4]. The significance of
the theoretical strength, however, lies not in the maximum
strength (MS) value that a solid can possibly achieve but
rather in how it is degraded, from which one could deci-
pher the underlying mechanisms for yielding. A classic
example is the discovery of crystal dislocations [1–5]
which have since become one of the pillars of modern
mechanics of crystalline materials.

Different from crystals, metallic glasses (MGs) have no
long-range periodic atomic structure and deform plasti-
cally at yield point via localized shear [6]. Johnson and
Samwer [7] show that experimental yield stress scales
universally for a wide range of MGs, about 0:0267G at
room temperature, where G is the shear modulus from the
bulk MG samples. From nanoindentation, Wright, Saha,
and Nix [8] obtained the maximum shear stress (MSS)
of 0:0808G for a Zr40Ti14Cu12Ni10Be24 MG. Also using
nanoindentation, Bei, Lu, and Gorge determined the MSS
of a Zr41Ti14Cu12:5Ni10Be22:5 of 0:0829G [9]. Recently,
Bakai et al. [10] reported a MSS about 0:166G in a small
tip of a Zr41Ti14Cu12:5Ni10Be22 needle under electrical
ionization potential.

Naturally one would like to ask what the true maximum
strength is, or conversely why the strength of real MGs

is what it is. Knowing either or both could shed some

light on understanding deformation mechanisms in MGs.

Presently, we are unable to answer these questions because

the theoretical strength for MGs is not available. As a

result, the experimentally determined MSs are often com-

pared with those derived for crystals [7–9], which varies

from 0:05G to 0:2G, where G is the shear modulus of the

crystal, depending on the geometry of the crystal lattice,

crystallographic orientation, and the models used for esti-

mation [2,11]. Such comparison may introduce ambiguity

in glasses. Therefore, a direct and rigorous theoretical

assessment of the true MS for MGs is needed.
Here, we give the first theoretical estimate for the MS for

MGs by using a nonlinear elastic theory in a defect-freeMG,

which is justified by the anticipated large deformation strain

corresponding to the maximum stress and the exceedingly

large elastic strain limit observed in real MGs, typically

2%–3%. At such large deformation, nonlinear contribution

must be considered. Although not being widely recognized,

the nonlinear elastic effects are manifested in many proper-

ties but determined only in a few cases that are disguised as

‘‘anharmonicity’’ or ‘‘structural anisotropy’’ [12,13]. In the

following, we outline the theoretical framework.
Consider a material point in configuration X in a MG,

under stress�ijðXÞ it moves to a new configuration xwith a

Lagrangian strain �. At a given temperature T, the corre-

sponding Helmholtz free energy Fðx; TÞ ¼ Fð�; TÞ at state
x can be written as [14]

Fð�; TÞ ¼ Fð0; TÞ þ �ijðXÞ�ijVðXÞ þ 1

2!
CijklðXÞ�ij�klVðXÞ þ 1

3!
cijklmnðXÞ�ij�kl�mnVðXÞ

þ 1

4!
~cijklmnpqðXÞ�ij�kl�mn�pqVðXÞ þ � � � ;

to the fourth order in �, where Fð0; TÞ ¼ FðX; TÞ,
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�ijðXÞ ¼ 1

VðXÞ
@F

@�ij

��������X;�0
;

CijklðXÞ ¼ 1

VðXÞ
@2F

@�ij@�kl

��������X;�0
;

cijklmnðXÞ ¼ 1

VðXÞ
@3F

@�ij@�kl@�mn

��������X;�0
;

and

~cijklmnpqðXÞ ¼ 1

VðXÞ
@4F

@�ij@�kl@�mn@�pq

��������X;�0

are the corresponding second Piola-Kirchhoff stress, the
isothermal second-, third-, and fourth-order elastic con-
stants at state X, respectively. VðXÞ is the volume of the
system. Einstein summation convention is automatically
assumed. Similarly, at state x, we can obtain the corre-
sponding stress and the elastic constants,

�ijðxÞ ¼ 1

VðxÞ
@F

@�ij

��������x;�0

and

CijklðxÞ ¼ 1

VðxÞ
@2F

@�ij@�kl

��������x;�0
;

cijklmnðxÞ ¼ 1

VðxÞ
@3F

@�ij@�kl@�mn

��������x;�0
;

and

~cijklmnpqðxÞ ¼ 1

VðxÞ
@4F

@�ij@�kl@�mn@�pq

��������x;�0
;

where VðxÞ is the volume of the system and � is a
Lagrangian strain originated from state x. From these
relations, we can connect the stress �ðxÞ at any deformed
state x to �ðXÞ at X via the following relation,

�ij ¼ ðV0=VÞaikajl
�
�klð0Þ þ Cklmnð0Þ�mn

þ 1

2
cklmnpqð0Þ�mn�pq

þ 1

6
~cklmnpquvð0Þ�mn�pq�uv þ � � �

�
; (1)

and the elastic constants CðxÞ to CðXÞ via
CijklðxÞ ¼ ðV0=VÞaimajnakpalq

�
Cmnpqð0Þ þ cmnpquvð0Þ�uv

þ 1

2
~cmnpquvxyð0Þ�uv�xy þ �� �

�
(2)

where aij ¼ aji ¼ @xi=@Xj is the deformation gradient
matrix, and V ¼ VðxÞ and V0 ¼ VðXÞ.

Equations (1) and (2) furnish the necessary conditions
for deriving theoretical strength of MGs if the second-,

third-, and fourth-order or higher-order elastic constants
are available. Here, we choose the natural state without
external applied stress as the reference X¼0, i.e. �ð0Þ ¼ 0.
Cð0Þ, cð0Þ and ~cð0Þ are the second-, third- and fourth-order
elastic constants of the deformation-free sample. When the
elastic constants are measured by ultrasound, any pre-
existing defect or imperfection will not significantly affect
the measurement, if its size is far smaller than the wave-
length of sound and remains static [15]. In addition, it is
difficult to create new, extended defects by ultrasound in
MGs because of the high activation stress needed (as
shown below). Thus the glassy material appears ‘‘ideal.’’
The theoretical strength of MGs can be obtained from

the theoretical stress-strain relation [Eq. (1)]. But there
are two concerns about the effectiveness of the theory.
One is the nonaffine deformation often found in amorphous
solids. As shown by Weaire et al. [16], however, its effects
are already incorporated in our theory through the elastic
constants. The second is that the MS obtained from stress-
strain relation may not always be the true theoretical
strength due to the possible existence of certain elastic
instability that is not along the loading path [14,17–20].
This so-called instability bifurcation can be captured from
the condition determined by the convexity of the free
energy f of the system under strain [20–22], that is,

1

VðxÞ
@2f

@�ij@�kl

¼ BijklðxÞ> 0 (3)

if the solid is stable; otherwise unstable, where f¼F�W,
F is the Helmholtz free energy and W is the work done to
the system by the external stress [20]. Bijkl ¼ Cijkl þ
1=2ð�ik�jl þ �jk�il þ �il�jk þ �jl�ik � 2�kl�ijÞ is the

elastic stiffness constant of a MG under external applied
stress � and

Cijkl ¼ 1

VðxÞ
@2F

@�ij@�kl

is the elastic constant in a deformed state x. At the MS,
the stability condition is violated such that jBijklj ! 0.

By solving the secular equations, jBijklj ¼ 0 [20–22], we

can obtain the maximum stress �, as well as the eigenstrain
that shows the deformation mode, i.e., shear or cleavage.
Note that to solve the stability equation [Eq. (3)], we need
to employ Eq. (2). Here we use both the stress-strain
relation and the stability condition to obtain the theo-
retical strength. Since the higher order elastic constants
are only available to date for Zr52:5Ti5Cu17:9Ni14:6Al10,
Pd40Cu30Ni10P20, and Zr41:2Ti13:8Cu12:5Ni10:0Be22:5 MGs
[23–25], we shall take these results in our theory (see
Table I).
For theoretical shear strength, we applied a pure shear

deformation to the sample. The corresponding deformation
gradient matrix
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a ¼
1þ �11 � 1

2 ð�2
11 þ �2

12Þ �12ð1� �11Þ 0
�12ð1� �11Þ 1þ �22 � 1

2 ð�2
22 þ �2

12Þ 0
0 0 1þ �33

0
B@

1
CA

and V0=V ¼ detðaÞ�1, where �12 is the applied shear
strain, �ii(i ¼ 1, 2, 3) are the normal strains induced by
the shear and �11 ¼ �22 � �33. From Eq. (1) we get the
shear stress �12 to the third order in �12. Figure 1(a) shows
the shear stress-strain relations. The values of the MSS are
5.22, 5.77, and 8.73 GPa while the corresponding maxi-
mum strain is 0.12, 0.13, and 0.17, respectively. The ex-
perimental values of the MSS for the three systems are 0.82
[26], 0.86 [27], and 0.93 [28] GPa, respectively. Figure 1(b)
shows that corresponding shear modulus,

G ¼ ðC11 þ C12ÞðC33C66 � ðC36 � �6=2Þ2Þ
ðC11 þ C12ÞC33 � 2C2

13

;

reaches zero at the maximum stress or strain, and the
stability analysis shows that j �Bj approaches zero simulta-
neously as G at the corresponding maximum shear strain
and stress. Here, j �Bj¼½C44C55�ðC45þ�6Þ2�ðC2

11�C2
12Þ�½C33C66�ðC36��6=2Þ2�, where �B ¼ 1=2ðBþ BTÞ. The

Voigt notation is used (11 ! 1, 22 ! 2, 33 ! 3, 23 ! 4,
13 ! 5, and 12 ! 6), such that C1111 ! C11, C1122 !
C12, C2313 ! C45, etc. Similarly, �12 ¼ �6, �12 ¼ �6=2,
�11 ¼ �1, etc. Therefore, in pure shear the MS obtained
from the stress-strain relation coincides with that from the
shear instability analysis.

In Table II we list the theoretical shear stress, strain, and
deformation mode for the three MGs. The MS from our
theory is around G=6 to G=5, which coincides with the
upper bound of the theoretical stress for close-packed
crystalline metals [2,11]. The result confirms the long-
held speculation that MG is the strongest among metallic
solids. As a comparison, the experimental MSS are about
G=35 to G=40 from bulk samples [7], around G=10 in
nanoidentation [8,9], and about G=6 in a nanowire [10].

Figure 2(a) shows the theoretical tensile and compres-
sive (t=c) stresses. The uniaxial deformation is along the x
direction and the deformation gradient matrix

a ¼
1� �11 0 0

0 1� �22 0
0 0 1� �33

0
@

1
A:

Table II lists the maximum theoretical values at aboutE=10
for tension and E=7 for compression of the three MGs.

TABLE I. The experimental second (�, �), third (�1, �2, �3), and fourth (	1, 	2, 	3, 	4) order Lamé coefficients for three metallic
glasses (23–25). Since only three fourth order Lamé coefficients (	2 þ 0:033	1, 	3, 	4 þ 0:026	2) are measured, we varied 	1 from
�1000 to 1000 and did not see significant changes in our results. Here, we take 	1 ¼ 100 GPa.

Lamé coefficients, GPa Zr52:5Ti5Cu17:9Ni14:6Al10 Pd40Cu30Ni10P20 Zr41:2Ti13:8Cu12:5Ni10:0Be22:5

� 92.71a 136.50a 88.34b

� 31.51a 34.11a 38.17b

�1 �218:0a �1474:0a �185:1b

�2 �140:2a �222:0a,d �130:1b

�3 �35:0a �76:8a �56:1b

	2 þ 0:033	1 �338c � � � � � �
	3 398c � � � � � �
	4 þ 0:026	2 �160c � � � � � �
aRef. [24].
bRef. [25].
cRef. [23].
dA typographic error occurred in Ref. [24]. �2 should have a negative sign.

FIG. 1 (color online). (a) The scaled shear stress vs
strain. (b) The effective shear modulus vs shear strain.
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The experimental compressive yield stress is about E=50
(few tensile strength is available) [26–28]. The difference
between the maximum t=c stresses indicates strength dif-
ferential effect or asymmetry observed experimentally. The
most intriguing finding though is that there is no shear
instability bifurcation observed in uniaxial loading as the
maximum t=c stresses at yielding are caused by the insta-
bility of Young’s stiffness modulus

E100 ¼
�B11ð �B22 þ �B23Þ � 2 �B2

12

�B22 þ �B23

;

which goes to zero at theMS [Fig. 2(b)]. The result indicates
that different from crystalline metals [14,17,20,29], yield-
ing in an initially isotropic MG under uniaxial loading
should occur via cleavage or necking [2,30]. In other words,
in an ideal MG, shear is no longer as easy or energetically
favorable as in crystals. However, in real MGs localized
shear occurs ubiquitously at much lower yield stress [6,7],
which contradicts our finding here. In the following, we
shall explain this discrepancy by focusing on possible

mechanisms involving correlated atomic motion with
some relevant length scales during deformation.
In the finite deformation theory of an ideal glass, each

atom subject to external stress participates in the homoge-
neous deformation; in other words, the atomic motion is
correlated and has the characteristic correlation length �C

approaching the size of the sample. In real MGs, yielding is
thought to be caused by groups of atoms [31–33]. Analysis
and simulation estimate that the correlated deformation
regions grow into the size of about a few hundred atoms
with �C of about 5 atomic spacing at yielding [7,31–35],
which gives rise to the corresponding stress of about G=40
in bulk samples [7,31]. For samples under nanoindentation
that have higher yield stress [8–10], �C is expected to be
larger [36] than in bulk samples. For bulk samples, �C=a�
5 and �=�max � 0:130 [7,31], where �max ¼ G=5 is our
theoretical MS and a is the mean atomic spacing. For nano-
indentation, �=�max � 0:415 [8,9], and the average value
for�C=a�14 [34–36].Note that these data are the only ones
existing to date that we are aware of. The trend in Fig. 3
shows clearly that the theoretical strength changes with the
correlation length; in other words, the smaller the character-
istic size of the correlated atomic motion, the easier for
plastic deformation to occur, and the lower the observed
yield stress.

FIG. 2 (color online). (a) The scaled tensile and compressive
stress vs strain. (b) The Young’s modulus E100 vs uniaxial strain.

FIG. 3. The relation between the ‘‘achievable maximum
strength’’ and the (inverse) critical length of the correlated
atomic motion at the onset of yielding. The dotted line is a
guide for the eyes.

TABLE II. The theoretical shear (�max), tensile (�max
T ), and compressive (�max

C ) stress, the corresponding strain, 	max, �max
T , and

�max
C , and the deformation mode.

Loading mode Tension Compression Shear

Deformation mode E½100� ¼ 0 E½100� ¼ 0 G ¼ 0
Theoretical stress and strain �max

T (GPa) �max
T =E �max

T �max
C (GPa) �max

C =E �max
C �max(GPa) �max=G 	max

Zr52:5Ti5Cu17:9Ni14:6Al10 8.65 0.10 0.17 8.51 0.10 0.12 5.22 0.17 0.12

Zr41:2Ti13:8Cu12:5Ni10:0Be22:5 7.88 0.08 0.13 16.36 0.16 0.18 8.73 0.23 0.17

Pd40Cu30Ni10P20 11.77 0.12 0.08 14.38 0.15 0.11 5.77 0.17 0.13
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The analysis leads us to the following suggestions: (i) if
the plastic deformation carriers are deformation regions
with correlated atom motion, they should not have fixed
structure and size such as dislocations in crystals. They are
a function of the achievable yield stress, and vice versa
(Fig. 3). Such a unique mechanism is also reflected in the
strong sensitivity of MGs’ mechanical response to the
loading mode [37] that is much less or even absent in
crystalline metals. (ii) In real MGs, some locally correlated
atomic motion at or near certain structural features can
preset �C such as casing voids, surface scratches, micro-
cracks, inclusions and second phases, or surface. As sug-
gested by atomistic simulation, the presence of a crack of a
nanometer scale can readily initiate shear bands and sig-
nificantly reduce the strength in a MG [38] by raising local
stress [6,39] (Fig. 3). (iii) Conversely, a region already
having structural, concentration or chemical inhomogene-
ity could trigger local shear and thus lead to lower strength.
In reality, imperfections with the length scale of a few
hundred atomic spacings are not uncommon, even in the
nanoscale samples [40–43].
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