
Magnetic Field Blocks Two-Dimensional Crystallization in Strongly Coupled Plasmas
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Crystallization in a two-dimensional strongly coupled plasma from a rapidly cooled fluid is found to be

efficiently blocked by an external magnetic field. Beyond a threshold of the magnetic field strength B, the

relaxation time to the equilibrium crystal increases exponentially with B, which is attributed to an

impeded conversion of potential to kinetic energy. Our finding is opposed to the standard picture of two-

dimensional freezing of one-component systems which does not exhibit a nucleation barrier and opens the

way to keep two-dimensional fluids metastable over long times.
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Introduction.—It is known that the nature of crystalliza-
tion from a melt crucially depends on the dimensionality of
the system. For one-component repulsively interacting par-
ticles, in three spatial dimensions, freezing is a first-order
transition such that crystals are formed via nucleation over a
free energy barrier with a subsequent growth process [1].
Contrarily, in two dimensions, freezing is continuous (or
very weakly first order) [2], such that the missing nuclea-
tion barrier brings a quenched fluid almost instantaneously
into a polycrystalline state. Most of our knowledge of two-
dimensional freezing comes from experiments on mesoso-
copic particles suspended at an interface [3–5] or levitated
in a plasma (so-called dusty or complex plasmas [6,7]),
electrons on the surface of liquid helium [8], and from
computer simulations of model systems (see, e.g.,
Refs. [9–11]) or topological ideas [12–15].

Complex plasmas containing highly charged dust grains
are particularly promising pivotal systems to explore crys-
tallization processes on the fundamental length scale of the
particles in two dimensions [16]. Dust particles do also
occur in many different situations in interplanetary and
interstellar environments and can be easily controlled and
quenched by external fields [17].

In this Letter, we show that an external magnetic field
blocks crystallization in a quenched two-dimensional one-
component plasma, e.g., a complex plasma, provided the
magnetic field strength exceeds a threshold value. This not
only contradicts the standard view of two-dimensional
crystallization but is even more surprising given the fact
that a homogeneous magnetic field does not change the
statics and structure of the system, since the configura-
tional part of the Hamiltonian is independent of B.
Therefore, in particular, it does not affect the equilibrium
fluid-solid transition at all. Nevertheless, we demonstrate
here that during rapid cooling, the Lorentz force acting
on the charged grains radically alters the kinetic pathway
to transform the fluid into the solid by stopping transfer
of potential energy into kinetic energy. Therefore, the

relaxation channels of the fluid are efficiently closed by
the magnetic field. The typical time upon which the fluid
can be kept metastable grows exponentially with the mag-
netic field strength B. Exponentially growing relaxation
times do also occur along the glass transition [18], express-
ing the fact that the system viscosity increases drastically.
We demonstrate, however, that unlike in glass formation
the fluid here is still highly mobile.
We obtain our findings by simulation and explain them

within a simple cage model. Apart from its fundamental
importance, the efficient blocking of crystallization by a
magnetic field in two dimensions can be exploited to keep
two-dimensional strongly correlated fluid plasmas meta-
stable for a long time. This applies to a strongly coupled
and strongly magnetized one-component plasma and, in
particular, to a complex plasma and cold ions in a two-
dimensional trap [19].
The general idea is sketched in Fig. 1. An equilibrated

system performing molecular dynamics at initial tempera-
ture Ti is suddenly quenched at time t ¼ 0 toward
zero ‘‘kinetic’’ temperature by setting all particle veloc-
ities to zero. In the absence of a magnetic field (B ¼ 0),
the system relaxes toward a new equilibrium state by
transferring potential energy into kinetic energy until a
new equilibrated state with a final temperature Tf is

reached after a typical short relaxation time �r. As a
magnetic field does not affect any equilibrium properties,
in particular, the final state and Tf should be independent

of B. However, the relaxation time �r dramatically
increases when a magnetic field is present, as is schemati-
cally shown in Fig. 1 by plotting the system temperature
(as derived from the kinetic energy of the system) as a
function of time t.
In detail, we consider a two-dimensional one-

component Yukawa system involving N particles of uni-
form mass m and charge q subjected to a perpendicular
external magnetic field B ¼ Bêz. The particle trajectories
are governed by Newtonian dynamics
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€ri ¼ Fi=mþ!c _ri � êz; i ¼ 1; . . . ; N; (1)

with the cyclotron frequency !c ¼ qB=m. Fi is the force
on particle i due to all other particles

Fi ¼ �ri

XN
j�i

q2 expð�rij=�Þ
4�"0rij

: (2)

Here, rij ¼ jri � rjj and � is the Debye screening length.

In equilibrium, the structure is solely governed by
the dimensionless Coulomb coupling parameter � ¼
q2=ð4�"0akBTÞ, and the inverse normalized Debye length

� ¼ a
� , where a ¼ ½1=ðn�Þ�1=2 is the mean particle dis-

tance at a given number density n. The cyclotron frequency
does not change the structure but only the dynamics, as
mentioned above. This implies that phase transitions are
independent of the magnetic field strength which we

conveniently express in terms of � ¼ !c

!p
, where !p ¼

½2q2=ð4�"0a3mÞ�1=2 is the plasma frequency. In the fol-
lowing, we choose � ¼ 1 which is a typical value for
Yukawa systems. Then, the system undergoes a fluid-solid
transition when � exceeds �c � 187 [20].

We solve Eq. (1) numerically for N ¼ 4096 particles by
molecular dynamics simulation with periodic boundary

conditions. The particle velocities of an equilibrated sys-
tem at initial reduced temperature T�

i ¼ 1=�i are then set
to zero, and the system evolves microcanonically. Typical
snapshots after quenching deeply into the crystalline state
and waiting for a long time of !pt ¼ 24 000 are shown

in Fig. 1 for three different reduced magnetic field
strengths �. In the absence of the field, the system has
reached its equilibrium crystalline state, as indicated by the
high degree of crystallinity color coded in the number of
nearest neighbors, whereas at high strengths (� ¼ 2), no
phase transformation into the solid is visible.
More details are summarized in Fig. 2(a). For � ¼ 0

(top curve), the temperature relaxation is practically in-
stantaneous, while for � ¼ 2 (bottom curve), relaxation
does not occur within our total simulation time of !pt ¼
128 000. The inverse of the ‘‘final’’ kinetic temperature so
achieved is plotted in Fig. 2(b) for various initial tempera-
tures, exhibiting a vast difference between the nonmag-
netic and the magnetic cases. A structural analysis based
on the order parameter �6 ¼ hjNNðiÞ � 6jii [NNðiÞ is the
number of nearest neighbors] reveals that—if the pre-
quench temperature is low enough (�i * 100)—the system
can crystallize at zero magnetic field; see Fig. 2(c). In
contrast, there is no crystallization in the presence of a
sufficiently high magnetic field.
The dependence on the magnetic field strength �

(at fixed �i) is addressed in Fig. 3, showing a drastic

(a)

(b) (c)

FIG. 2 (color online). (a) Temporal evolution of T� for
�i ¼ 140 for � ¼ 0 to � ¼ 2 (top to bottom curve). The quench
takes place at !pt ¼ 0; the excursion of the temperature to zero

is not shown. (b) Coupling parameter �f at a time !pt ¼ 24 000

after the quench as a function the initial coupling parameter �i.
(c) Corresponding structural order parameter �6 after the quench
as a function of �i, indicating a liquid for �6 * 0:1 and a crystal
for �6 & 0:1.

FIG. 1 (color online). Top: sketch of the quenching process.
Bottom: configuration snapshot of a quarter of the simulation
box (�i ¼ 140) before and after the quench at different magnetic
fields (after a time !pt ¼ 24 000). The color indicates the

number of nearest neighbors: 5 [light gray (yellow)], 6 (black),
7 [dark gray (red)], and other (purple).
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exponential increase of the relaxation time �r over more
than three decades upon a relatively small change in � by
less than a factor of 2. Concomitantly, the kinetic energy at
a fixed time instant after the quench exhibits a sudden drop
at a critical value of � � 1 which is a ‘‘fingerprint’’ of the
exploding relaxation time. We investigate the dynamics of
this metastable state by considering the mean-squared
displacement urðtÞ ¼ hjrðtÞ � rðt0Þj2i averaged over all
particles and starting times t0 after the quench; see
Figs. 3(c) and 3(d). The particle dynamics are slow for
small fields, consistent with the fact that a crystal was
formed, but still fast for larger magnetic fields, implying
that the system remains in the fluid state. Under these
conditions, even though the system is kinetically much
colder than for small �, it is orders of magnitude more
mobile. Upon further increase of � beyond the critical
value, the diffusive particle dynamics slow down again
[Fig. 3(d)], since a magnetic field inhibits perpendicular
diffusion [21].

We now explain these findings by a cage model of a solid
or strongly correlated fluid. The simplest approximation is
to assume a single particle in a static isotropic harmonic
cage

€rðtÞ ¼ �!2rðtÞ þ!c _rðtÞ � êz; (3)

where ! is identified with the plasma frequency !p.

After a sudden quench, the particle is, in general, not at
the potential minimum. It thus moves on a hypocycloid [22]
such that the Lorentz force impedes the particle to reach
the potential minimum; see Figs. 4(a)–4(c). Therefore, the
magnetic field enforces that the particle kinetic energy is
kept small by reducing the transfer of potential energy into
kinetic energy. In this model, however, this reduction is
rather smooth as a function of the magnetic field strength;
see Fig. 4(d) as compared to Fig. 3(b).
The exploding relaxation time for increasing magnetic

field strength observed is better explained with a structured
cage with fixed nearest neighbors interacting with the inner
model particle with the same Yukawa potential as in the
full simulation. For that purpose, we have fixed NN neigh-
bor particles at positions

xk

yk

 !
¼ a

ffiffiffiffi
�

p ð1þ 0:05kÞ sinð2�k=nÞ
cosð2�k=nÞ

 !
; k¼ 1; . . . ;NN;

(4)

which introduces some imperfection (as these positions
deviate from idealized lattice positions) and models a fluid
cage. The numerical solution of the equations of motion in
this cage is shown in Figures 5(a)–5(c) for NN ¼ 6. For
small magnetic fields, the whole cage area is explored by
the particle. At a critical value of �, congruence is reached
between the cycloid motion of the particle and the under-
lying potential [Fig. 5(b)], upon which the particle does not
reach the cage center [notice the minute increase in � from

(b)

(d)(c)

(a)

FIG. 3 (color online). �i ¼ 140 (a) Relaxation time scale of
the kinetic temperature [cf. Fig. 2(a)]. (b) Kinetic energy per
particle at a time !pt ¼ 24 000 after the quench. (c) Mean-

squared displacement urðtÞ after the quench for � ¼
0:0; 0:8; 0:9; 2:0; 1:2 (bottom to top curve at large times).
(d) The value of urðtÞ at !pt ¼ 4000, a measure of the long-

time diffusivity of the system.

FIG. 4 (color online). (a)–(c) Solution of Eq. (3) for � as
indicated. The dashed white lines indicate equipotential lines.
(d) Maximum kinetic energy [the value of _xðtÞ2 þ _yðtÞ2] attained
in Eq. (3) up to !pt ¼ 300 as a function of �. The values of � of

(a)–(c) are indicated by vertical lines [36].
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0.99 to 1.05 in Figs. 5(a) and 5(b)]. This sudden qualitative
change in the trajectory is reflected in the maximum kinetic
energy attainable by the particle, which sharply drops at
this critical value of � [Fig. 5(d)]. For even higher mag-
netic fields, the particle stays increasingly closer to the
equipotential line; see Fig. 5(c) [23]. This behavior
is found similarly for other numbers of neighbors
[NN¼5, 7, Fig. 5(d)]. The drop in the kinetic energy occurs
at � � 1, in good agreement with the simulation results of
the full system; cf. Fig. 3(b). Of course, in the real many-
body situation, the particle cage is not static. Nevertheless,
our results indicate that the same physical principles are at
work, with the (smeared) cage picture giving an intuitive
explanation why a magnetic field suddenly blocks freezing.

In summary, we have reported that a magnetic field
keeps a quenched two-dimensional fluid metastable for
long times provided the field is strong enough. The relaxa-
tion time grows exponentially with the magnetic field
strength B. Our results are of relevance for strongly
coupled magnetized plasmas, including ions in traps, and
can in principle be verified in experiments on dusty plas-
mas [26,27]. To achieve the necessary values of � in
laboratory systems, it is required to use very small dust
particles (‘‘nanodust’’) which are easier to magnetize [28].
Another approach has recently been proposed in which an
ordinary dust system is set into rotation via a coupling to a
rotating neutral gas column where the resultant Coriolis

forces mimic the effect of a large magnetic field. Such
experiments have already been carried out for small dust
clusters [29], and simulations predict that this effective
magnetization is also viable in larger two-dimensional
systems [30]. Similar experiments are conceivable for
systems with strongly correlated neutral particles. To real-
ize the quench in dusty plasma experiments, the plasma
can be heated, e.g., by lasers [31–33], and the heating
power can be modified as needed. In typical dusty plasma
experiments, the dust-plasma frequency is on the order of
!�1

p ¼ 10 ms [34], so that the fluid should remain meta-

stable for tens of minutes to hours even for magnetic fields
only slightly exceeding the critical threshold. We note,
however, that friction with the ambient plasma and neutral
gas may serve to facilitate the exchange between potential
and kinetic energy and provide a practical limit on
the longevity of the metastable liquid. In this regard,
we have carried out additional simulations of dissipative
systems with damping rates typical for dusty plasma
experiments (� � 1 s�1 [34]) and find that the time scale
of the structural relaxation is on the order of minutes. Since
qualitatively similar behavior is expected for three-
dimensional plasmas, the prolonged relaxation in the pres-
ence of a magnetic field may also influence details of the
cooling process in the outer layers of neutron stars [35].
This work is supported by the Deutsche Forschungs-

gemeinschaft via SFB TR 6 and SFB TR 24 and Grant
No. shp0006 at the North-German Supercomputing
Alliance HLRN.
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