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We extend the formalism of self-consistent Green’s function theory to include three-body interactions

and apply it to isotopic chains around oxygen for the first time. The third-order algebraic diagrammatic

construction equations for two-body Hamiltonians can be exploited upon defining system-dependent one-

and two-body interactions coming from the three-body force, and, correspondingly, dropping interaction-

reducible diagrams. The Koltun sum rule for the total binding energy acquires a correction due to the

added three-body interaction. This formalism is then applied to study chiral two- and three-nucleon forces

evolved to low momentum cutoffs. The binding energies of nitrogen, oxygen, and fluorine isotopes are

reproduced with good accuracy and demonstrate the predictive power of this approach. Leading order

three-nucleon forces consistently bring results close to the experiment for all neutron rich isotopes

considered and reproduce the correct driplines for oxygen and nitrogen. The formalism introduced also

allows us to calculate form factors for nucleon transfer on doubly magic systems.
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Introduction.—The ultimate goal of ab initio nuclear
theory is to achieve accurate predictions of nuclear prop-
erties that are consistent with the underlying theory of
QCD. Advancing on this problem is presently of primary
importance in the mid mass region of the nuclear chart, in
response to significant advances in the discovery of new
nuclides at radioactive isotope facilities [1]. Moreover,
parameter free predictions would help reducing uncertain-
ties in our knowledge of those drip line isotopes that are
currently beyond experimental reach [2]. It has now
become clear that accurate predictions require the explicit
inclusion of multi-nucleon forces [3–5]. For the oxygen
chain, it has been shown that the Fujita-Miyazawa three-
nucleon force (3NF) is responsible for explaining the
anomalous dripline at 24O [3]. Reference [6] confirmed
this result by considering approximated chiral 3NFs at
next-to next-to leading order (NNLO). However, no inves-
tigation of 3NF’s effects on neighboring isotopic chains
has been made to date. In this Letter, we find that a correct
inclusion of NNLO 3NFs consistently reproduces the
observed binding energies and that 3NFs similarly affect
the behavior near the drip lines for other isotopes as well.

Concerning the calculation of mid mass nuclei, break-
throughs were possible over the last decade due to the
introduction of many-body methods that scale gently
with increasing particle number. Self-consistent Green’s
function theory (SCGF) [7,8], coupled cluster (CC)
[4,6,9], and in-medium similarity renormalization group
(IM-SRG) [10,11] have been employed in ab initio calcu-
lations of doubly closed shell nuclei with masses up to
A� 60. For open shells, semi-magic isotopes can be
calculated by breaking particle conservation symmetry
and reformulating theories in terms of Hartree-Fock
Bogolioubov reference states, as done in Gorkov theory

[12–15] and in IM-SRG [16]. Calculations based on
IM-SRG have been performed for ground state energies.
On the other hand, the state-of-the-art SCGF theory can
also be extended to the Gorkov approach [12,14] and it
gives access to a wealth of nuclear structure information.
This includes the addition or removal of one or two nucle-
ons to and from the calculated ground states [17–19] and
direct link to microscopic optical potentials [20,21].
This Letter extends the scope of SCGF to include 3NFs

in finite nuclei. We define density dependent one- and
two-body interactions derived from the 3NF part of the
Hamiltonian and work out the correction to the Koltun
sum rule to obtain binding energies. This allows us to fully
include chiral 3NFs in the third-order algebraic diagram-
matic construction [ADC(3)] equations commonly used in
quantum chemistry applications [22,23]. The method is
applied to study chiral 3NFs in the oxygen, nitrogen, and
fluorine isotopic chains, as well as the spectra of single
neutron states in the sd shell. This opens the possibility of
probing modern realistic nuclear interactions on a wide
range of experimental data, including excitation spectra,
the evolution of shell closures, and the position of drip lines.
Formalism.—We employ Green’s function (or

propagator) theory and calculate the single particle
propagator [24],
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are the nucleon addition and separation energies, respec-
tively. In Eq. (1), j�Aþ1

n i, j�A�1
k i are the eigenstates and

EAþ1
n , EA�1

k are the eigenenergies of the (A� 1)-nucleon
system. Hence, g��ð!Þ describes the exact propagation of

a single nucleon and hole excitations through the system.
From Eq. (1) we also extract the one-body reduced density
matrix,

��� ¼ h�A
0 jcy�c�j�A

0 i ¼
Z
C"

d!

2�i
g��ð!Þ; (2)

where the integration contour C " is taken on the upper half
of the imaginary plane.

We start our calculations with the intrinsic Hamiltonian
HðAÞ ¼ H � Tc:m:ðAÞ ¼ UðAÞ þ VðAÞ þW in which the
kinetic energy of the center of mass (c.m.) has been sub-
tracted, and we put in evidence the dependence on the
number of nucleons A. The operators U, V, and W collect
all the one-, two-, and three-nucleon contributions, respec-
tively. Based on this, we define system dependent one- and
two-body effective interactions obtained by contraction
with the correlated density matrix, Eq. (2). Their matrix
elements are given by

~U�� ¼ U�� þ V��;����� þ 1

2
W���;��	����	�; (3)

~V��;�� ¼ V��;�� þW���;��	�	�: (4)

All matrix elements are properly antisymmetrized and
summation over repeated indices are implied here and in
the following. The resulting Hamiltonian, ~H¼ ~Uþ ~VþW,
can be proved to lead to the same Green function (1) as the
original Hamiltonian with the caveat that only interaction-
irreducible terms are retained in the diagrammatic expan-
sion [25,26]. Equations (3) and (4) generalize the idea of
normal ordering of the Hamiltonian to fully correlated
densities. In this work we keep only the ~U and ~V terms
and discard diagrams with explicit interaction-irreducible
3NFs. The error associated with this truncation has been
seen to be negligible in Refs. [27–29]. The single particle
propagator g��ð!Þ can then be calculated by exploiting the
effective one- and two- body interactions with the already
available two-body formalisms.
We first solve the spherical Hartree-Fock (HF) equations

for the full Hamiltonian in a given model space. The
resulting propagator, gHF��ð!Þ, is then used as a reference

state to calculate the energy-dependent part of the self-
energy. We employ the ADC(3) method [22,23] and write
the irreducible self-energy as

�?
��ð!Þ ¼ �1
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where M (N) are interaction matrices in the 2p1h (2h1p)
space and C (D) are the corresponding coupling strengths
to the single particle states. In the ADC(3), these matrices
are constructed to guarantee that all diagrams up to third
order are included in Eq. (5). In general, the ADC(n)
approach defines a hierarchy of truncation schemes of
Eq. (5) for increasing order n that guides systematic im-
provements of the method. The correlated propagator
g��ð!Þ is finally obtained by solving the Dyson equation,

g��ð!Þ ¼ gHF��ð!Þ þ gHF��ð!Þ�?
��ð!Þg��ð!Þ; (6)

which is diagonalized using a Lanczos algorithm as
explained extensively in [31,32]. Note that we employ
the sc0 approximation of Refs. [15,32] where only the
�0

��ð!Þ contribution of Eq. (5) depends on the reference
states gHF��ð!Þ. This implies the iterative solutions of
Eq. (6) to evaluate�1

�� ¼ ~U�� �UHF
�� in terms of the final

correlated density matrix, Eq. (3).
In the presence of 3NFs, the ground state energy can still

be inferred from the Koltun sum rule (SR) that now
acquires a correction:

EA
0 ¼

Z
C"
d!

4�i
½U��þ!����g��ð!Þ�1

2
h�A

0 jWj�A
0 i: (7)

Equation (7)—based on the exact propagator—is still an
exact equation. However, it requires evaluation of the

expectation value of the 3NF part of the Hamiltonian
h�A

0 jWj�A
0 i, with an accuracy comparable to the many-

body approximation in use. We calculate this correction at
first order in W using fully correlated propagators,

hW3�i ¼ 1

6
W���;�	
����	��
�; (8)

that implicitly includes relevant higher order terms from
standard many-body perturbation theory. We found that it
is mandatory to use fully dressed propagators—the solu-
tion of Eq. (6)—but that this is also sufficient to account for
all relevant contributions. The next order correction is
given by

hWTDAi ¼ 1

4
W���;�	
�����	
;��; (9)

where �� is the two-body density matrix after subtraction
of the zeroth-order contribution coming from two
fully correlated but noninteracting nucleons, to avoid
double counting with Eq. (8). We estimated this using in
Tamn-Dancoff approximation (TDA) [33] and found its
contribution to be small compared to our estimated errors,
as discussed below.
The binding energy and spectra of neighboring even-odd

isotopes are extracted from the poles of propagator (1),
however, this requires a proper correction to account for
the variation in the kinetic energy of the c.m. motion with
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changing A. To extract the energy of a system with mass
A� 1, we recalculate g��ð!Þ for the doubly closed sub-

shell A-nucleon system but with a ~HðA� 1Þ corrected
Hamiltonian. We then obtain

EA�1 ¼ �"A�1
0 ½ ~HðA� 1Þ� þ EA

0 ½ ~HðA� 1Þ�; (10)

where we made explicit the dependence on the c.m.
correction for the Hamiltonian and EA

0 ½ ~HðA� 1Þ� is calcu-
lated using the corrected Koltun SR.

Results.—We perform calculations using chiral effective
field theory (EFT) two-nucleon (2N) and 3NFs evolved to
low momentum scales by using free-space similarity re-
normalization group (SRG) [34,35]. The original 2N inter-
action is next-to next-to next-to leading order (N3LO) with
cutoff �2N ¼ 500 MeV [36,37]. For the 3NF we use the
NNLO interaction in a local form [38] with a reduced
cutoff of�3N ¼ 400 MeV and low-energy constants cD ¼
�0:2 and cE ¼ 0:098, refitted to reproduce the 4He bind-
ing energy as discussed in Ref. [30]. This choice of �3N

softens the contributions of two-pion 3NF terms, herby
minimizing the impact of evolved 4NF. The 3NF obtained
by evolving only the original 2N N3LO Hamiltonian will
be referred to as ‘‘induced’’ 3NF and it is independent of
the pre-existing 3N NNLO interaction. Similarly, the
‘‘full’’ Hamiltonian is generated by evolving both initial
2N and 3NFs together. Since two-pion exchange diagrams
that incorporate physics from the Fujita-Miyazawa 3NF
appear at leading order in the chiral 3N NNLO force, their
effects are incorporated only in the full Hamiltonian.
Calculations were performed in model spaces up to 12
harmonic oscillator shells [Nmax � maxð2nþ lÞ ¼ 11],
including all 2N matrix elements and limiting 3NF ones
to configurations with N1 þ N2 þ N3 � N3NF;max ¼ 14.

Figure 1 shows the convergence pattern of total binding
energies for 16O and 24O as a function of the model space
size. The convergence is optimized by the choice of the
chosen oscillator frequency which is close to the minimum
of the @! dependence for the present interaction [11]. The
staggering between adjacent results is due to the particular
truncation of 3NF matrix elements and the alternate par-
ities of harmonic oscillator shells. Separate exponential fits
to the calculated 24O energies, for Nmax either even or odd,
differ by 100 keVand are within 600 keVof the Nmax ¼ 11
result. Similarly, changing @! between 20 and 24 MeV we
find up to 450 keV variation in our results (see Fig. 2).
Overall, these errors amount to about 0.6% of the total
binding energy. The right panel of Fig. 1 demonstrates the
similar convergence of the h�A

0 jWj�A
0 i expectation values.

The contribution of hWTDAi, Eq. (9), is never bigger than
300 keV and represents a small correction to the Koltun
SR. A proper study of the contributions to hWi will be
addressed in a forthcoming publication. For the present
purposes, we sum the above uncertainties to make a con-
servative estimate for our convergence error of 1% for the
calculated total binding energies.

The differences between calculated binding energies and
the experiment, are demonstrated in Fig. 2 for different
values of @! and �SRG. Refs. [11,28] studied variations of
�SRG within larger intervals than the one considered here
and found uncertainties of at most a few per cent. This
gives an estimate of the error due to neglecting 4NF and
higher terms. Our results with �SRG in the limited range
1:88–2:0 fm�1 do not exceed variations of 0.5% and this in
agreement with Ref. [28].
From previous studies based on the ADC(3) method, we

expect an accuracy of the many-body truncation scheme
of about 1% [39,40]. The extrapolated 16O ground state
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FIG. 1 (color online). Convergence of 16O and 24O as a func-
tion of increasing size of the model space for @! ¼ 24 MeV
and �SRG ¼ 2:0 fm�1. Left: Binding energies from the corrected
Koltun sum rule, Eq. (7), as obtained from the induced and
full interactions. Right. Expectation value h�A

0 jWj�A
0 i obtained

at first order only, Eq. (8), (full lines) and with correction from
two-body TDA ladders, Eq. (9) (dashed lines).
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FIG. 2 (color online). Differences between calculated and ex-
perimental ground state energies of oxygen isotopes for the full
interaction with different values of @! and �SRG. Results for

15O
and 23O are obtained from two separate calculations, one for
neutron addition and one for neutron removal (see text). Dots
and diamonds for 23O are almost indistinguishable with the scale
of this plot.
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(Fig. 1) is over bound at �130:8ð1Þ MeV but in close
agreement with the �130:5ð1Þ MeV obtained from
IM-SRG [11], giving further confirmation of the accuracy
achieved by different many-body methods. Note that the
energies of 15O and 23O can be obtained in two different
ways, from either neutron addition or removal on neigh-
boring subshell closures. Results in Fig. 2 differ by at most
400 keV, again within the estimated uncertainty of our
many-body truncation scheme. The c.m. correction in
Eq. (10) is crucial to obtain this agreement. For @! ¼
24 MeV and �SRG ¼ 2:0 fm�1, the discrepancy in 15O
(23O) is 1.65 MeV (1.03 MeV) when neglecting the
changes in kinetic energy of the c.m. but it reduces to
only 190 keV (20 keV) when this is accounted for. This
gives us confidence that a proper separation of the center of
mass motion is being reached.

Figure 2 also gives a first remarkable demonstration of
the predictive power of chiral 2N þ 3N interactions:
accounting for the precision of our many-body approach
and dependence on �SRG found in Ref. [28], we expect an
accuracy of at least 5% on binding energies. All calculated
values agree with the experiment within this limit. Note
that the interactions employed were only constrained by
2N and 3H and 4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with @! ¼ 24 MeV
and �SRG ¼ 2:0 fm�1. The top panel of Fig. 3 shows the
predicted evolution of neutron single particle spectrum
(addition and separation energies) of oxygen isotopes in
the sd shell. Induced 3NFs reproduce the overall trend but
predict a bound d3=2 when the shell is filled. Adding pre-

existing 3NFs—the full Hamiltonian—raises this orbit
above the continuum also for the highest masses. This
gives a first principle confirmation of the repulsive effects
of the two-pion exchange Fujita-Miyazawa interaction
discussed in Ref. [3]. The consequences of this trend are
demonstrated by the calculated ground state energies
shown in the bottom panel and in Fig. 4: the induced
Hamiltonian systematically under binds the whole isotopic
chain and erroneously places the drip line at 28O due to the
lack of repulsion in the d3=2 orbit. The contribution from

full 3NFs increase with the mass number up to 24O, when
the unbound d3=2 orbit starts being filled. Other bound

quasihole states are lowered resulting in additional overall
binding. As a result, the inclusion of NNLO 3NFs consis-
tently brings calculations close to the experiment and
reproduces the observed dripline at 24O [41–43]. Our cal-
culations predict 25O to be particle unbound by 1.54 MeV,
larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic

chains. This is demonstrated in Fig. 4 for the semimagic
odd-even isotopes of nitrogen and fluorine. Induced 3NF
forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully cor-
rected by full 3NFs that strongly bind 23N with respect to
27N, in accordance with the experimentally observed drip
line. The repulsive effects of filling the d3=2 is also
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FIG. 3 (color online). Top. Evolution of single particle ener-
gies for neutron addition and removal around sub-shell closures
of oxygen isotopes. Bottom. Binding energies obtained from the
Koltun SR and the poles of propagator (1), compared to experi-
ment (bars) [44,46,47]. All points are corrected for the kinetic
energy of the c.o.m. motion. For all lines, red squares (blue dots)
refer to induced (full) 3NFs.
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FIG. 4 (color online). Binding energies of odd-even nitrogen
and fluorine isotopes calculated for induced (red squares)
and full (green dots) interactions. Experimental data are from
[45–47].
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observed in 29F. However, the inclusion of an extra proton
provides enough extra binding to keep this isotope bound
by about 890 keV (calculated) with respect to 25F, closer
to the experimental value of 3.55 MeV [45]. The induced
interaction alone would overestimate this binding and
NNLO 3NFs are fundamental in achieving the correct
balancing between the attraction generated by the extra
proton and the repulsion due to the filling of the neutron
sd shell.

In conclusion, we have considered the extension of the
SCGF method to include three-body Hamiltonians. By
properly defining system dependent effective one- and
two-body interactions that include the relevant contribu-
tion from 3NFs, calculations can be performed with exist-
ing formalisms for two-body Hamiltonians. We applied
this approach for the first time to study SRG-evolved chiral
2N and 3N interactions on the isotopic chains of nitrogen,
oxygen and fluorine. We find that chiral 3NF at NNLO are
crucial in predicting the binding energies of these isotopes
and that the findings of Ref. [3] apply to other isotopic
chains, as well as to the dripline of nitrogen. Within the
estimated errors due to the many-body techniques and the
dependence on the SRG evolutions, we find a remarkable
agreement between our calculations and the experimental
energies along all three isotopic chains.

Recent works [14,15] show that state of the art SCGF
methods can be extended to the corresponding Gorkov
formalism for open shells. This would not only allow direct
calculations of semi-magic even-even isotopes with analo-
gous quality as above but would also allow extracting a
wealth of information on neighbor isotopes reachable by
transfer of one or two nucleons.
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