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Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube
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We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It
relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels
can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative
comparison with existing lattice data. The improved theoretical control makes it manifest that existing
lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube—the

worldsheet axion.
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Recent advances in lattice simulations of quantum chro-
modynamics (QCD) have allowed us to visualize confining
strings quite vividly [1,2] and to measure the spectrum of
their low lying excitations with impressive accuracy [3].

These lattice results have lead to an embarrassing situ-
ation for theorists. On the one hand, even for strings whose
length is merely twice their width, many of the energy
levels in the lattice simulations show remarkable agree-
ment with the energy levels of a theory that the QCD string
is certainly not described by, the bosonic string defined
at the quantum level through light-cone quantization [4].
This Goddard-Goldstone-Rebbi-Thorn (GGRT) string is
only Lorentz invariant in D =26. QCD flux tubes,
however, originate from a relativistic theory in four dimen-
sions. Thus, the agreement is rather surprising. On the
other hand, existing theoretical techniques for calculating
the flux tube spectra for the Lorentz-invariant Nambu-Goto
(NG) string [5-7] break down for the relatively short
strings that can be simulated with current lattice tech-
niques. To make matters more confusing, there is also a
family of energy levels which disagree badly with the
predictions made by the GGRT theory [3].

This Letter describes a theoretical framework for comput-
ing energy levels of the NG string for much shorter lengths
than previously possible. Our better theoretical understand-
ing allows us to explain both why there was agreement
between QCD flux tubes and GGRT strings for many levels,
and why there was disagreement for others. Rather interest-
ingly, we show that the data implies the existence of a
massive pseudoscalar resonance on the string worldsheet.
The NG string itself is thus insufficient to describe QCD
strings. We explain how to include this resonance into our
framework and measure its mass and width from the data.

Let us first describe the lattice data and compare it to the
standard perturbative results [5—7]. All numerical results
we discuss are taken from [3] and are for SU(3) gluody-
namics. To measure the flux tube spectrum on the lattice,
one calculates the correlation function of a Wilson
loop inserted at time 7 =0 and its conjugate at 7 = T,
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both winding around the compact spatial dimension with
periodicity R. From the asymptotics of the correlation
function in the limit of large 7', one deduces the energy
of the ground state of a closed flux tube of length R. To
measure the energies of excited states one deforms the
shape of the Wilson loop to project out lower-lying energy
levels. The ground state energy as a function of the string
length R is shown in green (bottom) in Fig. 1. The data
agrees remarkably well with the GGRT ground state
energy. Though surprising at first sight, this agreement
finds a straightforward explanation in an effective field
theory approach. The excitations of a long QCD flux
tube are Goldstone particles. They arise because the
presence of a long, straight string spontaneously breaks

FIG. 1 (color online). AE =E — R/€? for three different
levels. The ground state is shown in green (bottom). States with
spin 1 and with one and two units of longitudinal momentum are
shown in orange (middle) and red (top), respectively. The value of
€, was determined from the ground state data. The solid line shows
the prediction of a derivative expansion. The dashed lines shows
the prediction of the GGRT theory. For the spin 1 states, the
prediction for a free theory is shown as dotted lines.
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the target space Poincaré symmetry ISO(1,3) to ISO(1, 1) X
SO(2). For a recent discussion emphasizing this viewpoint,
we refer the reader to [8]. The standard method of calculating
the effective string spectrum, then, is a derivative expansion,
or equivalently an expansion in the small parameter €,/R.
The nonlinearly realized target space Lorentz symmetry
imposes strong restrictions on the coefficients in this expan-
sion and predicts all the coefficients up to €4 /R> [7]. For the
ground state the universal coefficients in this expansion are
the same as in the GGRT theory. Figure 1 illustrates that this
universality alone is enough to explain the ground state data.

A bigger puzzle arises for excited states. Figure 1 shows
the energy as a function of length for excited states with
a single left-moving phonon with one and two units of
longitudinal momentum. The universal terms agree well
with the data at large R. However, for short strings the €, /R
expansion breaks down, and the universal terms no longer
provide a good description of the data.

By itself, the breakdown of the perturbative expansion
for small R is not surprising. One might, however, wonder
why it works so much better for the ground state than for
these excited states. Perhaps an even more revealing ques-
tion is why the data follows the GGRT energy spectrum so
closely even in the regime where the low energy expansion
breaks down.

The situation is more intricate for excited states contain-
ing both a left- and a right-moving phonon, each with one
unit of longitudinal momentum. These two-particle states
break up into one scalar, one pseudoscalar, and two com-
ponents of a symmetric traceless tensor under the unbroken
O(2). The effective string theory predictions are again
universal up to €4/R> in the £,/R expansion. However,
for these levels, the universal terms of order €4/R> for a
relativistic string differ from those in the GGRT theory [8].
In the GGRT theory, all these two-particle states are
degenerate. For the relativistic string, representations
with different spins are split. The splitting originates
from the Polchinski-Strominger (PS) interaction [§—10]
and is proportional to D — 26. The numerical results of
[3] are shown in Fig. 2 along with theoretical predictions.
The data for scalar and symmetric tensor levels follow the
GGRT prediction closely at a large radius, but for small
radii a splitting is clearly visible. The splitting qualitatively
agrees with the predictions of the universal PS terms.
However, the €,/R expansion breaks down at radii that
are so large that a quantitative comparison is impossible.
Even more noticeable is that the pseudoscalar state
strongly deviates from the GGRT model. (The splitting
between the two components of the symmetric tensor is
due to lattice effects [3].) This data clearly calls for an
alternative to the standard €,/R expansion.

Let us first identify the reason for the failure of the €,/R
expansion for excited states. To this end, we first inspect
the properties of the €,/R expansion in the GGRT theory
itself. Its exact spectrum is

FIG. 2 (color online). AE = E — R/ for the lowest lying
states containing both left and right movers. The scalar and
pseudoscalar states are shown in blue (middle) and red (bottom).
The spin-2 states are shown in green (top). The solid lines show
the theoretical predictions derived in the remainder of the paper,
including the worldsheet axion in addition to the Nambu-Goto
fields. The thinner, red (blue) and green dashed lines show the
prediction for the pseudoscalar (scalar) and tensor channel
without the axion. The dotted lines show the prediction of the
€,/R expansion. The gray dashed line is the GGRT prediction.

R> 47X (N — N)* | 4w - 1
Egerr = F+7R2 +F(N+N_6'

Here, N and N count the longitudinal momentum carried
by the left- and right-moving phonons separately, so that
27(N — N)/R is the total longitudinal momentum of the
state. This formula reveals the technical reason for the
breakdown of the €,/R expansion. For excited states
the expression under the square root not only involves
powers of £,/R, but also contains factors of 277N, which
turn the €,/R expansion into a diverging asymptotic series
even for relatively large values of R.

To find a remedy, let us reformulate the issue in more
physical terms. In general, the energy of an excited state
is of the form E = €;'&(pL,, {;/R) where p, are the
momenta of individual phonons comprising the state.
These are quantized in units of 277/R in a free theory.
So in reality, the naive €,/R expansion is a combination of
two physically different expansions. The first expansion is
in the softness of individual quanta compared to the string
scale, i.e., in p;€,. The second expansion is a large volume
expansion, i.e., an expansion in €,/R.

The key idea of our approach is to improve the conver-
gence by disentangling the two expansions. To achieve
this, we divide the calculation of the finite volume spec-
trum into two steps. We first calculate the (infinite volume)
S-matrix. This can be done perturbatively provided the
center of mass energy of the colliding phonons is small
in string units. We will call this the momentum expansion.
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We then calculate the finite volume energies from this
S-matrix. Conceptually, this step is not related to the
perturbative expansion used to calculate the S-matrix. A
prescription for this step only exists in two cases. First,
there is a perturbative procedure due to Liischer [11,12]
which is routinely used in lattice calculations and is appli-
cable for states with energies below the inelastic threshold.
Second, for two-dimensional integrable theories, there is
the thermodynamic Bethe ansatz (TBA) [13,14], a set of
integral equations, whose solution yields the exact spec-
trum of the theory on a circle from the S-matrix.

In our case, the particles are massless and we cannot
directly rely on Liischer’s method. However, let us ignore
this for now and give the prescription to extract the finite
volume spectrum from the S-matrix in a way that allows us
to discuss both methods in parallel. For massless particles,
it is convenient to choose p; to be positive and to divide
particles into left and right movers. The energy of the state
then takes the form

AE=Yp, + Wy, (1)

where Wy represents winding effects from virtual quanta
traveling around the circle. The particle momenta satisfy a
modified periodicity condition,

e(p;) = 2mn;/R, 2)

where
1
e(p)=p+ 5225(17’ pj) + Wp, 3)
J

and n; are positive integers. Thus, interactions modify
the quantization condition for momenta in two ways. First,
real particles scatter with each other explaining the infinite
volume scattering phase shift 26(p;, p;) in Eq. (3). Second, it
is modified by winding corrections represented by Wp.

In Liischer’s approach, the winding corrections Wg, Wp
are calculated perturbatively. For theories with a mass gap
W, they are exponentially suppressed as e #R. Thus, in
analyses of lattice results, it is common to use the massive
version of equations (1) and (2), with Wgp = 0. In the
context of integrable field theories, the resulting simplified
equations are known as the asymptotic Bethe ansatz.

In massless theories, winding corrections are only
power-law suppressed, requiring us to work harder and
to use insights from integrable theories. The exact form
of the excited state TBA equations for the GGRT theory is
known explicitly [15]

1 ()
Wg==> f dp'In(1 — e Rew(p)),
T Lr 0

4
©  d258(p, p') @

1
W) = [ S m = e,

where the [(r) subscript refers to left (right) movers, and
the pseudoenergies €;,)(p) are determined by solving the
integral TBA equation (3).

In the GGRT theory, the phase shift takes the simple
form 28GgrT = €2p;p,» allowing for an exact solution of
the TBA equations [15]. For future use, note that for a state
with a pair of left and right movers with equal and opposite
momenta p, this phase shift together with Egs. (3) and (4)
results in the linear dispersion relation for pseudoparticles,
€gorr(p) = cp, with ¢ the solution of the quadratic
equation

p_ mt

=1+ ,
¢ SR 6R%c

(&)

which approaches the free theory value ¢ = 1 as €, — 0,
and equation (4) becomes

T
3Rc’

B w02 p
6R%¢’

WSGRT —_ _ WSGRT(ﬁ) — (6)

The worldsheet theory of a QCD flux tube is not inte-
grable. However, because of the target space translation
symmetry, the theory is weakly coupled at low energies
and the low energy scattering is dominated by purely
elastic processes. Furthermore, the low-energy scattering
amplitudes agree with those of the integrable GGRT theory
for which we do know the exact form of TBA equations
and winding corrections. We can thus use the TBA equa-
tions for the GGRT theory as a zeroth order approximation
and incorporate higher order contributions in the momen-
tum expansion as corrections to the scattering phase shift.
In our approximation, we only include corrections in the
asymptotic part and use the GGRT results (5) and (6) for
windings. This is justified by the form of Eq. (4). It ensures
that the winding corrections receive their dominant con-
tributions from virtual quanta with momenta below 1/R,
much softer than the real quanta.

It is also important to note that the momenta of the real
quanta for multiparticle states containing both left- and
right-moving phonons are softer than the free theory esti-
mate 277n;/R. This is immediate from (2) and (3) and
the fact that the GGRT phase shift grows in the UV. This
indicates that one should expect a better than naive agree-
ment between the QCD flux tube and the GGRT spectrum.
As soon as the relevant momenta are small enough, the two
theories have similar infinite volume S-matrices and, as a
result, should have similar finite volume spectra. This fact
is lost in the conventional perturbative expansion.

Let us first apply this logic to the purely left-moving
states. For these states the asymptotic Bethe ansatz is
trivial. The GGRT winding corrections are small, and one
expects the spectrum to be close to that of a free theory.
The dotted line in Fig. 1 shows that this expectation is
correct. This eliminates the mystery for these states.

For states containing both left and right movers, we
need to take into account corrections to the GGRT phase.

062006-3



PRL 111, 062006 (2013)

PHYSICAL REVIEW LETTERS

week ending
9 AUGUST 2013

The leading one-loop correction to the amplitude is
universal and takes the PS form [8]

1164
127

where + refers to the scalar and pseudoscalar channels
and — to the symmetric tensor channel.

Including this contribution in the asymptotic Bethe
ansatz results in a significant improvement for the scalar
and symmetric tensor levels as shown by the thin dashed
lines in Fig. 2. (The lines are dashed where tree-level and
one-loop phase shifts become comparable and our approx-
imations are unreliable.) Notice that we have not intro-
duced any new parameters. The improved theoretical
control makes it manifest that the anomalous behavior of
the pseudoscalar level cannot be blamed on the breakdown
of the perturbative expansion and a qualitatively new
ingredient is needed. The energy of the anomalous level
is roughly independent of the radius. This suggests that
the most straightforward way to explain this level is the
introduction of a massive pseudoscalar particle ¢ on
the worldsheet. The leading interaction compatible with
nonlinearly realized Lorentz invariance for such a particle
is a coupling to the self-intersection number [16] of the
string worldsheet

20pg = = (pip,)% (N

o . ;
Sint = % [d20¢Ka7K;;yE ’BEij, (8)

where K}, is the extrinsic curvature of the worldsheet.
This coupling makes it natural to refer to ¢ as the world-
sheet axion.

The axion appears as a resonance in the scattering
of Goldstone bosons with an antisymmetric flavor wave
function and it contributes to the scattering in the scalar
and symmetric tensor channels through #- and u-channel
diagrams. It is thus readily included in the TBA equations.
By following the strategy outlined above, i.e., by making
use of the GGRT expressions (5) and (6) for winding
corrections, we arrive at the following modified quantiza-
tion condition

CﬁR + 251)5 + 261‘68 = 27T, (9)
where
254 A6 264 A6
s = C1g g foztan_l(%)
8w (4p* + m?) 8m*(m* — 4p?)

is the axion contribution to the phase shift derived from (8),
with oy = (=1,1,1), o, = (0,0, 1), for scalar and for
symmetric and pseudoscalar channels, correspondingly.
Solving the periodicity condition (9) and inserting the
result in (1) with the GGRT expression (6) for Wy leads
to the final result for the energies.

By fitting the two free parameters (the axion mass m and
the coupling «) to the data, we obtained the spectrum
shown as solid lines in Fig. 2, which corresponds to

mt, = 1.857002, confirming the heuristic analysis of [3],
and a = 9.6 = 0.1. The error bars represent the statistical
uncertainty only. Based on a comparison of the two
symmetric tensor levels and a comparison of the states
with zero and one unit of longitudinal momentum, we
estimate the systematic and theoretical uncertainties to be
about a factor of five larger.

Note that unlike the heuristic formulae of [3], designed
to fit the pseudoscalar channel only, the TBA analysis
predicts shifts of the energies for the scalar and symmetric
tensor channels associated with the same resonance. As
seen in Fig. 2, these shifts result in a significantly better
agreement with the data.

Further support for the existence of this axion comes
from the data for the next excited level in the pseudoscalar
channel. We reverse the logic and use the TBA equations to
determine the scattering phase shift from the finite volume
spectrum, which is the standard approach in lattice QCD.
The resulting phase shifts for the pseudoscalar, scalar, and
symmetric tensor channels are shown in Fig. 3. For the
pseudoscalar, it exhibits a characteristic resonance shape
with the phase shift crossing 7/2 at the resonance. The
phase shift extracted from the data for the pseudoscalar
state we discussed so far is shown in light red. The dark red
points show the phase shift extracted from the data for
the next excited pseudoscalar state. Being able to present
the lattice data in this way is an interesting aspect of
our formalism and provides a very convincing case for
the existence of a pseudoscalar resonance (by the very
definition of what a resonance is), without relying on
any fitting procedure.
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FIG. 3 (color online). Scattering phase shift for two Goldstone
bosons as a function of the center of mass momentum in the
symmetric traceless, scalar, and pseudoscalar channel in top,
middle, and bottom panels, respectively. The solid and the long
dashed lines show the theoretical prediction with and without the
worldsheet axion, respectively.

062006-4



PRL 111, 062006 (2013)

PHYSICAL REVIEW LETTERS

week ending
9 AUGUST 2013

In summary, the TBA approach provides better theoreti-
cal control over flux tube spectra than the standard pertur-
bative expansion and is presently the only method for
calculating the spectrum of flux tube excitations for the
flux tube lengths probed on the lattice. It shows that exist-
ing lattice data provides strong evidence for the existence
of a new particle—the worldsheet axion. In a forthcoming
publication [17], we will present the details of our analysis
and elaborate on the diagrammatic interpretation of the
TBA method. We will also show the evidence for the same
resonance in the lattice data for more highly excited states.
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