
Origin of Cosmic Magnetic Fields

Leonardo Campanelli*

Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
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We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the

two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations

remain constant during inflation instead of being washed out adiabatically, as usually assumed in the

literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us

to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual

magnetic field is scale independent and has an intensity of few� 10�12 G if the energy scale of inflation

is few� 1016 GeV. Such a field accounts for galactic and galaxy cluster magnetic fields.
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Introduction.—The origin of the observed large-scale
�G magnetic fields in galaxies and galaxy clusters is one
of the major unsolved mysteries in cosmology (for reviews
on cosmic magnetic fields, see [1–3]).

There are two main schools of thought about the gen-
eration of such cosmic magnetic fields, according to which
magnetic fields we observe today are created either in the
early Universe (‘‘primordial hypothesis’’) or during the
processes of large-scale structure formation and evolution
(‘‘astrophysical hypothesis’’). According to the primordial
hypothesis, large-scale magnetic fields have been created
during an inflationary epoch of the Universe, or during
primeval cosmic phase transitions (such as electroweak or
quark-hadron phase transitions). Successively, these relic
fields have been possibly amplified in galaxies and galaxy
clusters by dynamo actions [1]. The astrophysical hypothe-
sis, instead, supposes that seed fields are generated by
plasma effects directly in galaxies and galaxy clusters,
and then amplified by a dynamo mechanism. Both hypoth-
eses meet with difficulties when their predictions are com-
pared with observations.

It is believed that inflation-produced magnetic fields
have large correlation scales � but extremely low inten-
sities, unless some nonstandard physics is introduced,
e.g., by adding nonstandard terms to the photon field
Lagrangian [2]. As shown in [4] (see [5] for a recent
criticism to this work), this is the case only if the spatial
curvature of the Universe is zero. However, in [4], the
initial magnetic spectrum is that associated to ‘‘unrenor-
malized’’ vacuum fluctuations. This is a questionable
assumption, since it gives a formally infinite, vacuum
expectation value (VEV) of the two-point magnetic corre-
lation function. It is the aim of this Letter to bring into
question the physical correctness of using unrenormalized
vacuum fluctuations and to show, contrary to what is
believed, that strong inflationary magnetic fields are a
natural consequence of standard quantum electrodynamics
in curved space (in particular in a Friedmann spacetime
with zero spatial curvature). This is possible if one, in order

to get a finite result, ‘‘renormalizes’’ the two-point magnetic
correlator.
Phase-transition-generated fields can have astrophysi-

cally relevant intensities [3], but their correlation lengths
are too small to explain cosmic magnetic fields, even
allowing a possible amplification due to magnetohydrody-
namic turbulent effects operating in the early Universe [6].
The generation of magnetic fields directly in galaxies

and galaxy clusters is problematic due to the fact that it is
very difficult to explain the presence of strong magnetic
fields in galaxies at high redshift, since (large-scale)
dynamo actions are inefficient on short time scales [1].
Moreover, the detected spectrum of distant blazars [7]
seems to be compatible with the presence of magnetic
fields in voids, whose nature can be then explained only
in the framework of the primordial hypothesis.
Seed fields.—The observation of magnetic fields in

galaxies and galaxy clusters could be explained if a
sufficiently intense large-scale magnetic field, such as
10�13 G & B0 & few� 10�12 G with � * few�Mpc,
were present prior to their formation. The above comoving
values take into account the amplification and stretching
of magnetic fields inside galaxies and galaxy clusters, due
essentially to the so-called Alfvén frozen flux effect [3]
and to the Kelvin-Helmholtz instability of intracluster
plasma flows [8].
In the following, we show that a primordial field with the

above properties is a natural consequence of inflation. To
set notations and to explain why this kind of field is
believed not to be generated in the standard Maxwell
theory, we consider first the case analyzed in the literature,
to wit, that of unrenormalized magnetic fluctuations from
inflation.
Unrenormalized fluctuations.—The equation of motion

for a magnetic field in a curved spacetime is homogeneous
in the field, so one needs an initial field in order to have a
today field different from zero. Quantum-mechanical ef-
fects during inflation give the unique possibility to have
such an initial magnetic field. As shown a long time ago by
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Parker [9], particles can be created by quantum-
gravitational effects in an expanding universe. However,
this is not the case for conformally invariant theories, a
result known as ‘‘Parker theorem.’’ Standard electromag-
netism in a Friedmann universe is invariant under confor-
mal transformations, so, in this case, the only other way to
have an initial magnetic spectrum is to consider electro-
magnetic vacuum fluctuations, which are present even in
conformally invariant theories.

The standard Maxwell Lagrangian for the electromag-
netic field A� is L¼�ð1=4Þ ffiffiffiffiffiffiffi�g

p
F��F

��, where g is the

determinant of the metric tensor and F��¼@�A��@�A�.

For the sake of simplicity, we assume that during infla-
tion the Universe is described by a de Sitter spacetime
with line element ds2 ¼ a2ðd�2 � dx2Þ, where a is the
expansion parameter, � ¼ �1=ðaHÞ is the conformal
time, and H is the (constant) Hubble parameter.
Working in the Lorentz gauge, r�A

� ¼ 0, we expand

the transverse part of the vector potential as ATðxÞ ¼P
2
�¼1

R
d3kð2�Þ�3"k;�ak;�Ak;�e

ikx þ H:c:, where the

transverse polarization vectors "k;� satisfy the complete-

ness relation
P

�ð"k;�Þið"�k;�Þj ¼ �ij � kikj=k
2, with k

being the comoving wave number. The annihilation and
creation operators satisfy the usual commutation relations

½ak;�; ayk0;�0 � ¼ ð2�Þ3���0�ðk� k0Þ, all the other commu-

tators being null.
The equation of motion for Ak;� is €Ak;� þ k2Ak;� ¼ 0

(a dot denotes differentiation with respect to the conformal
time), whose solution is Ak;� ¼ c1ðkÞe�ik� þ c2ðkÞeik�,
with c1ðkÞ and c2ðkÞ constants of integrations. These are
fixed by the choice of the vacuum, which is taken to be the
Bunch-Davies vacuum [9]. In this case, the above constants

are c1ðkÞ ¼ 1=
ffiffiffiffiffi
2k

p
and c2ðkÞ ¼ 0, so that we have the

standard plane-wave solution Ak;� ¼ e�ik�=
ffiffiffiffiffi
2k

p
. Let us

introduce the magnetic field, BðxÞ, in the usual way as
a2B¼r�AT . The vacuum expectation value of the
squared magnetic field is then h0jBðxÞ2j0i¼R1
0 dkk

�1P ðkÞ, where P ðkÞ ¼ P
�½k5=ð2�2a4Þ�jAk;�j2 is

the so-called magnetic power spectrum. For the plane-
wave solution we have P ðkÞ ¼ k4=ð2�2a4Þ.

Introducing the comoving wavelength � as k ¼ 2�=�,
one usually defines the magnetic field strength B on the

comoving scale � as Bð�Þ ¼ P ð2�=�Þ1=2. Accordingly,
during de Sitter inflation the magnetic field scales adiabati-
cally, B / a�2, reducing (exponentially) its intensity. As a
result, this field cannot explain cosmic magnetic fields, in
agreement with the standard literature.

Quantum-to-classical transition.—Before analyzing the
problem of renormalization of inflationary quantum
fluctuations, we notice that a transition from quantum to
classical behavior of such fluctuations is generally
expected to take place. Indeed, this occurs when quantum
coherence is destroyed by its coupling to the environment.
A quantum expectation value like h0jBðxÞ2j0i becomes

then indistinguishable from the corresponding classical
ensemble average hBðxÞ2i [10].
Classicalization of a given quantum fluctuation is real-

ized when it crosses outside the horizon during inflation,
and this is understood in terms of its ‘‘squeezing’’ proper-
ties [10]. Once a given realization of the magnetic fluctua-
tions has occurred during inflation, further evolution
proceeds classically. For this reason, we can treat super-
Hubble inflationary modes as classical stochastic fluctua-
tions after inflation, and, in particular, after reheating;
namely, after the energy associated to inflaton has been
converted into ordinary matter and any magnetic field gets
coupled to the newly formed plasma.
Renormalized fluctuations.—The standard approach in

calculating the inflation-produced magnetic fluctuations is
questionable since the quantity h0jBðxÞ2j0i is formally
infinite due to the ultraviolet divergence of the power
spectrum. This divergence can be cured by renormalizing
the magnetic correlator. It is worth noticing that the
same situation appears in a very different context, namely
in relation to the primeval power spectrum of the cosmic
microwave background radiation, when quantizing the
inflaton field fluctuations. Here, renormalizing the inflaton
two-point correlator gives very significant effects on
the amplitude and properties of perturbations from
inflation [11].
In this Letter, we adopt the method of adiabatic renor-

malization [12] although, recently enough, there has been
in the literature a critical discussion about the validity of
this renormalization technique [13]. In the adiabatic renor-
malization procedure, one assumes that the expansion
parameter is a slowly varying function of time. This is
attained by replacing the expansion parameter að�Þ by a
one parameter family of functions aTð�Þ ¼ að�=TÞ, and
taking the limit of large ‘‘slowness parameter’’ T. This
allows us to find a WKB (or adiabatic) solution to the
equation of motions to any desiderate order ðT�1Þn (with
n � 0). The adiabatic expansion is a formal one, in the
sense that it must be applied even if að�Þ is not a slowly
varying function of time. This assures the conservation of
the regularized energy-momentum tensor [12]. Then, the
physical (i.e., renormalized) VEV of a given quantity is
obtained from the unrenormalized one by subtracting
mode by mode the corresponding adiabatic quantity up to
the appropriate order, the minimum adiabatic order being
determined by the degree of ultraviolet divergence of that
quantity [9].
We assume that the physical VEV is a linear operator, in

the sense that h0j�1½c ðxÞ� þ�2½c ðxÞ� þ � � � j0iphys ¼
h0j�1½c ðxÞ�j0iphys þ h0j�2½c ðxÞ�j0iphys þ � � � , for all

functions �i of a given field c evaluated at the spacetime
point x. This is a necessary condition we must impose on
renormalized VEVs, since this property is verified by
classical ensemble averages and, according to the above
discussion, a possible classicalization of super-Hubble
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quantum fluctuations makes them indistinguishable from
each other. In order to cure ultraviolet divergences in the
VEV of the energy-momentum tensor, h0jT�

� j0i, one gen-
erally needs to subtract from that, and mode by mode, the
corresponding adiabatic quantity up to the order n ¼ 4
[12]. Since T

�
� is constructed starting from local quadratic

quantities in the fields, the linearity of the h0j . . . j0iphys
operator requires the use of the fourth adiabatic order also
for these quadratic quantities. In order to renormalize the
two-point magnetic correlator then, we consider the WKB
expansion up to fourth order.

In general, the adiabatic renormalization procedure
applied to the stress tensor reduces to normal ordering in
the limit of static að�Þ (the Minkowski case), and is com-
pletely equivalent to other renormalization schemes used in
quantum theory in curved spacetime [9,18]. In particular, it
gives the correct value of the so-called ‘‘conformal anom-
aly’’ in the case of conformally invariant theories [9,18,19].
Moreover, in all renormalization schemes, the removal of
infinities in the VEVof the energy-momentum tensor cor-
responds to the renormalization of the coupling constants
in the Einstein’s equations [18].

To apply the adiabatic renormalization procedure to the
two-point magnetic correlator, we first need to introduce a
regulator photon mass, m, for the transverse part of the
vector potential, which will be sent to zero at the end of
the calculation. This is possible due to well-known fact that
the transverse part of a Proca field (namely, a massive
spin-1 vector field) smoothly tends to the electromagnetic
field in the limit of vanishing mass [20]. This is also
necessary since we must temporarily break conformal
invariance of electromagnetism otherwise the adiabatic
solution and the exact solution to the equation of motion
would coincide. Generally, this would give incorrect
results, such as a vanishing electromagnetic conformal
anomaly. Similar breakdowns of conformal invariance
happen in other regularization schemes [18], such as di-
mensional regularization, where conformal invariance is
temporarily broken by letting the spacetime dimensions
going away from d ¼ 4, or in the �-function regularization
scheme, where the conformal invariance is broken by the
technique of analytic continuation. (Analogue situations
appear also in quantum theory in Minkowski spacetime.
For example, dimensional regularization may lead to the
breaking of chiral invariance, giving a chiral anomaly.) In
the case of a massive photon, the equation of motion
becomes €Ak;�;m þ!2Ak;�;m ¼ 0, where !2 ¼ k2 þm2a2.
The solution corresponding to the Bunch-Davies vacuum

is Ak;�;m ¼ ð ffiffiffiffi
�

p
=2Þei�ð1þ2�Þ=4 ffiffiffiffiffiffiffiffi��

p
Hð1Þ

� ð�k�Þ, where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4�m2=H2

p
and Hð1Þ

� ðxÞ is the Hankel function of the
first kind.

Second, we need the adiabatic solution AðAÞ
k;�;m of the

equation of motion. Because of the replacing of að�Þ !
aTð�Þ ¼ að�=TÞ (T ! 1), the adiabatic order of the solu-
tion can be found by counting the number of time derivatives

of að�Þ [9]. Following the standard procedure [9], we

write AðAÞ
k;�;m¼e�i

R
�

0
d�0Wðk;�0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wðk;�Þp

. Expanding W

up to the fourth adiabatic order, W ¼ P
4
i¼0 !

ðiÞ, we get,

from the equation of motion, !ð0Þ ¼ !, !ð1Þ¼
!ð3Þ¼0, !ð2Þ¼ð3=8Þ!�3 _!2�ð1=4Þ!�2 €!, and !ð4Þ ¼
�ð297=28Þ!�7 _!4�ð99=32Þ!�6 _!2 €!þð13=32Þ!�5 €!2þ
ð5=8Þ!�5 _!!

:::�ð1=16Þ!�4!
::::
. The adiabatic expansion of

W�1 up to the fourth order, W�1 ¼ P
4
i¼0ðW�1ÞðiÞ, comes

straightforwardly: ðW�1Þð0Þ¼!�1, ðW�1Þð1Þ¼ðW�1Þð3Þ¼
0, ðW�1Þð2Þ¼�ð3=8Þ!�5 _!2þð1=4Þ!�4 €!, and ðW�1Þð4Þ ¼
ð315=28Þ!�9 _!4 � ð105=32Þ!�8 _!2 €!þ ð15=32Þ!�7 €!2þ
ð5=8Þ!�7 _!!

:::�ð1=16Þ!�6!
::::
.

Finally, the physical VEV of the squared magnetic
field is defined by the mode-by-mode (namely under
the integral sign) subtraction h0jBðxÞ2j0iphys ¼
limm!0

R1
0 dkk�1P physðk;mÞ, where we have defined

P physðk;mÞ ¼ P ðk; mÞ � P ðAÞðk;mÞ. Here, P ðk;mÞ ¼P
�½k5=ð2�2a4Þ�jAk;�;mj2 is the exact magnetic power

spectrum in the massive case, while P ðAÞðk;mÞ ¼
P

�

P
4
i¼0½k5=ð2�2a4Þ�ðW�1ÞðiÞ is the corresponding

adiabatic expansion up to the fourth order. We find that
only the fourth-order term determines the value of the
renormalizedmagnetic correlator, giving h0jBðxÞ2j0iphys ¼
19H4=ð160�2Þ [21]. This shows that vacuum magnetic
fluctuations during de Sitter inflation are constant in time,
and not adiabatically diluted by the cosmic expansion.
In order to study the correlation properties of these

fluctuations, it is useful to consider the two-point magnetic
correlator. It can be expressed in terms of the power
spectrum as h0jBðxÞBðyÞj0i¼R1

0 dkk
�1P ðkÞj0ðkjx�yjÞ,

where j0ðxÞ is the zeroth-order spherical Bessel
function of the first kind. The physical two-point
magnetic correlation function is, adopting again the adia-
batic renormalization scheme, h0jBðxÞBðyÞj0iphys ¼
limm!0

R1
0 dkk�1P physðk; mÞj0ðkjx � yjÞ, giving

h0jBðxÞBðyÞj0iphys ¼ 19H4

160�2
: (1)

This implies that P physðk;mÞ=k, the double of the so-called
magnetic energy density spectrum, is asymptotically pro-
portional to a delta function, �ðkÞ, in the limit m ! 0.
Physically and in contrast to the case of unrenormalized
fluctuations, this means that magnetic vacuum fluctuations
do not depend on the comoving scale � ¼ jx� yj [22,23].
Thereby, inflation ‘‘grows’’ quantum fluctuations equally
on sub- and superhorizon scales [24].
Backreaction on inflation.—The above calculations have

been carried out in a fixed de Sitter background, namely,
assuming that backreaction of electromagnetic vacuum
fluctuations on inflation is negligible. This is valid if
the physical VEVs of the components of the electromag-
netic energy-momentum tensor are much smaller than
those associated to inflation, ðT�

� Þinf ¼ M4��
� , where ��

�
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is the Kronecker delta. Here, we have introduced the
energy scale of inflation, M, which is related to the
energy density of inflation, 	inf , through M4 ¼ 	inf ¼
3H2=ð8�GÞ, where G ¼ 1=m2

Pl is the Newton constant

and mPl is the Planck mass.
The physical VEV of the electromagnetic energy-

momentum tensor cannot be obtained as the massless
limit of the total (transverse plus longitudinal) energy-
momentum tensor of the Proca field. This is due to the
fact that the longitudinal part of the energy-momentum
tensor in the massive theory is not well behaved as m ! 0
[19]. In this case, to get the right result one needs to add a
gauge-breaking term and a compensating complex ghost
field to the standard Proca Lagrangian [19]. The final result
is the usual one, h0jðT�

� Þe:m:j0iphys ¼ ð31=480�2ÞH4��
� [9],

and is strictly connected to the electromagnetic conformal
anomaly. Consequently, backreaction on inflation is negli-
gible if ðM=mPlÞ4 � 135=62, which essentially means that
the energy scale of inflation must be below the Planck scale
mPl ’ 1:22� 1019 GeV.

The renormalized actual field.—To simplify the analysis
we consider the case of instantaneous reheating; i.e., we
assume that after inflation the Universe enters directly in
the radiation dominated era. From the beginning of this era
until the present time, quantum magnetic vacuum fluctua-
tions are decohered and can be treated as classical stochastic
fluctuations. In the presence of a plasma with conductivity

, a classical magnetic field evolves according to the auto-
induction equation [25] @ða2BÞ=@� ¼ ð1=
Þr2ða2BÞ. In
the limit of (infinitely) high conductivity, we get
a2Bðx; �Þ ¼ a2RHBðx; �RHÞ, where RH indicates the time
of reheating. Accordingly, we have hBðx; �ÞBðy; �Þi ¼
hBðx; �RHÞBðy; �RHÞiðaRH=aÞ4, where the classical en-
semble average hBðx; �RHÞBðy; �RHÞi is indistinguishable
from the quantum correlator h0jBðxÞBðyÞj0iphys on large

(super-Hubble) scales, as explained above.

Since a / g�1=3
�S T�1 after reheating, where g�SðTÞ is the

effective number of entropy degrees of freedom at the
temperature T [26], the actual value of the magnetic field

intensity is B0 ¼ Biðg�S;0=g�S;RHÞ2=3ðT0=TRHÞ2 cos�W .
Here, Bi is the root-mean-square value of the physical
magnetic field at the end of inflation, T0 ’ 2:37�
10�4 eV is the actual temperature, TRH is the reheat tem-
perature, g�S;0 ¼ g�SðT0Þ ¼ 43=11 [26], and g�S;RH ¼
g�SðTRHÞ. Above the electroweak phase transition (when
we assume inflation is taking place) the Uð1Þ gauge field
which is quantum mechanically excited is indeed the hy-
percharge field, not the electromagnetic one. Below the
electroweak phase transition, however, the hypercharge
field is projected onto the electromagnetic field, and this
gives the cosine of the Weinberg angle �W .

The reheat temperature can be related to the energy
scale of inflation by observing that the energy density of
radiation at the beginning of radiation era, 	rad ¼
ð�2=30Þg�;RHT4

RH, where g�;RH is the effective number of

degrees of freedom at the time of reheating and can be taken
equal to g�S;RH [26], must be equal to the energy density at

the end of inflation. We get TRH ¼ ½30=ð�2g�;RHÞ�1=4M.

Taking g�S;RH ¼ 427=4 [26], referring to the massless

degrees of freedom of the standard model of particle phys-
ics, the actual, scale-independent magnetic field is B0 ’
3� 10�13ðM=1016 GeVÞ2 G. If the energy scale of inflation
is around M ’ 1016 GeV, this field explains the cosmic
magnetic fields.
Conclusions.—We have shown, in the framework of the

standard free Maxwell theory, that the renormalized quan-
tum VEV of the two-point magnetic correlation function
does not evolve adiabatically but remains constant during
de Sitter inflation. Quantummagnetic fluctuations are scale
independent and their intensity depends on the scale of
inflation. Super-Hubble quantum magnetic fluctuations
decohere during inflation, and can be then treated as clas-
sical stochastic fluctuations in radiation and matter eras,
when they are coupled to the cosmic plasma. The actual
magnetic field is scale independent on large scales and, if
the scale of inflation is of order of M� 1016 GeV, it has
the right intensity to explain the magnetization of galaxies
and galaxy clusters.
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