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The Kozai mechanism for a hierarchical triple system could reduce the merger time of inner eccentric

binary emitting gravitational waves (GWs) and has been qualitatively explained with the secular theory

that is derived by averaging short-term orbital revolutions. However, with the secular theory, the minimum

value of the inner pericenter distance could be excessively limited by the averaging operation. Compared

with traditional predictions, the actual evolution of an eccentric inner binary could be accompanied by

(i) a higher characteristic frequency of the pulselike GWs around its pericenter passages and (ii) a larger

residual eccentricity at its final inspiral phase. These findings would be important for GWastronomy with

the forthcoming advanced detectors.
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Introduction.—Today, large-scale laser interferometers
are under development to attain a worldwide network of
second-generation gravitational-wave (GW) detectors [1].
Their overall sensitivities will be improved by a factor of
�10, with drastic noise reduction at the lower frequency
regime down to �10 Hz [1]. Accordingly, the understand-
ing of the basic properties of potential astrophysical
sources has become significant, more than ever.

One of the most promising targets of these detectors
is the inspiral of a neutron-star binary (NSB), and in this
Letter, we focus our attention to GWobservation for NSBs.
From identified samples in our Galaxy, NSBs are expected
to have very small residual eccentricities [Oð10�5Þ] around
10 Hz [2,3].

Meanwhile, it has been pointed out that the Kozai
mechanism might play important roles for compact binary
mergers [4–6]. This mechanism works for hierarchical
triple systems and oscillates pericenter distances of inner
binaries due to the exchange of angular momenta between
the inner and outer orbits [7]. This characteristic feature
can be qualitatively understood with the secular theory for
which, following a perturbative method in analytical me-
chanics, we effectively average out short-term fluctuations
associated with both the inner and outer orbital revolutions
[8,9]. Since energy loss due to GW emission depends
strongly on pericenter distance, the Kozai mechanism can
largely reduce the merger time of an inner NSB
of a triple system. This interesting possibility has been
actively discussed mostly with the secular theory, includ-
ing the averaging operations [4–6] (see also Ref. [10]).

In this Letter, we show that for a highly eccentric inner
binary emitting GWs, there is a breakdown of the secular
theory or orbital-averaged approximation, in comparison
to the full numerical integration. To handle evolution of
such a binary, we need to properly resolve the two orbital
revolutions without taking their averages. For an inner
NSB, this could result in (i) a higher characteristic

frequency of the pulselike GWs around its pericenter
passages, (ii) a higher residual eccentricity at its final
inspiral phase, and (iii) a shorter merger time. All of these
changes could be more than 1 order of magnitude. Our
findings (i) and (ii) are significant for the advanced detec-
tors and their data analyses. While quantitative evaluation
for the merger rate requires detailed astronomical assump-
tions and is beyond scope of this Letter, the last one
(iii) indicates a higher merger rate for NSBs of triples in
star clusters [5]. This is because the outer third body would
be frequently perturbed there.
In this Letter, we only discuss relativistic effects for

hierarchical triples, but tidal effects around planets also
depend strongly on orbital distance [11] (see also Ref. [12]
for collisions of white dwarf binaries). For extrasolar
planetary systems (e.g., hot Jupiters [13,14]), an investiga-
tion similar to this work would be worth considering.
Secular theory.—We study evolution of a hierarchical

triple system of point massesm0,m1, andm2. We basically
use the geometrical units with G¼c¼ðm0þm1þm2Þ¼1.
The inner binary is composed ofm0 andm1, and we denote
its semimajor axis by a1 and its instantaneous orbital
separation by d1. In the next section, we also introduce
astrophysical units, considering m0-m1 as a NSB. For the
outer third body m2, we define its semimajor axis a2,
relative to the mass center of the inner binary (total mass
M1 � m0 þm1). Likewise, we use the labels j ¼ 1 and 2
for the inner and outer orbital elements (e.g., e1 for the
inner eccentricity) and assume hierarchical orbital configu-
rations with � � a1=a2 � 1.
First, we briefly discuss the long-term secular evolution

of the triple system in Newtonian dynamics, following the
approach developed by von Zeipel [8]. By suitably using
canonical transformations, we effectively average the
short-term fluctuations associated with both the inner and
outer mean anomalies l1 and l2 (the instantaneous angular
positions of the inner and outer point masses [11]).
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The relevant Hamiltonian after the averaging operations
can be evaluated perturbatively with the expansion param-
eter � � 1. The leading-order (quadrupole) term Hqd ¼
Oð�2Þ is given by [4–6,9]

Hqd ¼ Cqd½ð2þ 3e21Þð1� 3�2Þ � 15e21ð1� �2Þ cos2!1�;
(1)

with Cqd � m0m1m2�
2=½16M1a2ð1� e22Þ3=2� and the

argument of the inner pericenter !1 [11]. Here, we define
� � cosI with the opening angle I between the inner and
outer orbital angular momentum vectors (identical to the
angle i in Ref. [9]). We denote the next-order (octupole)
term by Hoc½¼ Oð�3Þ� [9]. For our secular analysis of the
inner binary, we keep up to this term for the gravitational
perturbation externally induced by m2. But, there exists
a relation Hoc / ðm0 �m1Þ, resulting in Hoc ¼ 0 for
m0 ¼ m1 [9]. Later, we use this property to examine
possible effects of the subleading terms.

Next, we mention general relativistic corrections to
the system, using the post-Newtonian (PN) expansion.
The lowest-order (1PN) term H1PN for our hierarchical
configuration is obtained after averaging the inner mean
anomaly l1 as [4–6,8]

H1PN ¼ � 3m0m1M1

a21ð1� e21Þ1=2
: (2)

At this stage, our effective Hamiltonian Hc for the secular
evolution is given by

Hc ¼ Hqd þHoc þH1PN; (3)

and the system is conservative (thus putting the subscript c
above) [4–6]. Using canonical equations and transforma-
tions of variables, we have, e.g.,

�
d!1

dt

�
c
¼ 6Cqd

�
4�2

G1

þ � � �
�
þ O:T:

þ 3

a1ð1� e21Þ
�
M1

a1

�
3=2

; (4)

�
de1
dt

�
c
¼ 30Cqd

e1ð1� e21Þ
G1

ð1� �2Þ sin2!1 þ O:T:; (5)

ðda1=dtÞc ¼ ðda2=dtÞc ¼ dHc=dt ¼ 0, and the scaling
relations ðde2=dtÞc ¼ O:T: and ðd!2=dtÞc ¼ Oð�2Þ.
Here, we defined G1 ¼ m0m1½a1ð1� e21Þ=M1�1=2 and
put O.T. for terms of Oð�3Þ originating from Hoc [4,6].

The total angular momentum is conserved with ðd=dtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1� e22Þ

q
¼ Oð�3Þ for the magnitude of the

outer one.
The triple system becomes dissipative at the 2.5 PN

order, due to emission of GWs. Given our hierarchical
configuration, the dissipation predominantly works for
the inner binary, and we include its effects only for a1

and e1, using standard formulas for isolated eccentric
binaries [15]. Combining these with the conservative con-
tributions, we can write down the final expressions for the
secular evolution such as d!1=dt ¼ ðd!1=dtÞc,

da1
dt

¼ � 64m0m1M1

5a31ð1� e21Þ7=2
�
1þ 73

24
e21 þ

37

96
e41

�
; (6)

de1
dt

¼ � 304m0m1M1e1

15a41ð1� e21Þ5=2
�
1þ 121

304
e21

�
þ

�
de1
dt

�
c
; (7)

which have strong dependencies on 1� e1. We also have
a2 ¼ const. These secular equations have been widely
used for analyzing long-term evolutions of relativistic
hierarchical triple systems [4,6].
Numerical results.—In this section, we numerically

discuss the Kozai mechanism for relativistic hierarchical
triples, first using the secular equations and then directly
integrating the PN equations for three-body systems.While
a triple system has many parameters, we fix most of them
to concisely explain our new findings.
In our geometrical units, we fix the masses atM1 ¼ 0:2,

m2 ¼ 0:8, and the initial orbital parameters at a1 ¼ 3:57�
105, a2 ¼ 60a1 ¼ 2:14� 107 � a2i (i.e., initially � ¼
1=60), e1 ¼ 0:2, and e2 ¼ 0:6. We also set the initial
angular variables at !1 ¼ �=2 and �1 ¼ !2 ¼ 0 (�1 is
the longitude of the inner ascending node [11]). For our
study, the remaining important parameter is the initial
inclination Ii. We explore the regime Ii � 90� for which
an inner binary can merge in a short time (also preferable
for costly direct calculations).
For an actual astrophysical system, we presume that the

inner binary is a NSB with their total mass M1 ¼ 2:8M	.
Then, the initial axes correspond to a1 ¼ 0:05 AU and
a2 ¼ a2;i � 3 AU. Below, instead of the direct time

variable t, we use the effective outer revolution cycles

N2 � t=P2i defined with the initial orbital period P2i ¼
2�a3=22i (corresponding to 1.38 yr). The primary GW

frequency of a quasicircular inner binary becomes 10 Hz
(� the lower end of the advanced detectors) at the critical
separation a1 ¼ a1cr � 34:6.
Since observed NSBs have nearly equal masses

(with a relative difference of &7% [2]), we mainly set
m0 ¼ m1 ¼ 0:1 in geometrical units. For an isolated
binary with a semimajor axis a ¼ 0:05 AU and masses
m0 ¼ m1 ¼ 1:4M	, the merger time due to GW emission
becomes 1:0� 1010 yr even for e ¼ 0:7.
As mentioned earlier, the octupole termHoc vanishes for

m0 ¼ m1. In order to safely estimate its potential effects,
we also examine the case ðm0; m1Þ ¼ ð0:11; 0:09Þ.
Results with the secular theory.—As an example

for predictions of the secular theory, in Fig. 1, we provide
the inner semimajor axis a1 and pericenter distance
rp1 � a1ð1� e1Þ as functions of the outer cycles N2.
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Their ratio rp1=a1 is identical to (1� e1). The basic

parameters for this calculation are given in the caption.
The inner binary merges at N2m ¼ 1209 that is consid-

erably smaller than the cycles N2m ¼ Oð1010–11Þ for iso-
lated binaries with moderate initial eccentricities [5,6].
Because of the Kozai mechanism, the inner eccentricity
e1 oscillates in the rangle 0:2 & e1 & 0:9992, and the
minimum pericenter distance becomes rp1 ’ 300.

When we switch off the radiation reaction and also drop
the octupole and higher terms, we have conserved quanti-
ties in the secular theory, as mentioned after Eq. (5)

[in particular,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1� e22Þ

q
]. These conserved quantities

actually allow us to set a lower limit rp1 � 300 close to

Fig. 1 (see, e.g., Ref. [6] for the role of the 1PN effect).
In Fig. 1, the energy of the inner binary is radiated

mostly around the close approaches d1 � 300. As dis-
cussed in the literature [5,6], the oscillation amplitude of
e1 decreases gradually due to the 1PN apsidal precession
[the last term in Eq. (4)], and, at N2 * 1000, the inner
elements evolve, as if an isolated binary. The binary
becomes nearly circular at the final phase close to the
merger. At the critical separation a1 ¼ a1cr, the residual
eccentricity becomes e1cr ¼ 5:3� 10�3.

In Fig. 2, using the symbols on the solid lines, we show
the duration N2m and the residual eccentricity e1cr at
a1 ¼ a1cr for Ii � 90�. The results (circles) for ðm0; m1Þ ¼
ð0:1; 0:1Þ are similar to those (triangles) for ðm0; m1Þ ¼
ð0:11; 0:09Þ. Therefore, for the present parameters, the
octupole term plays a minor role, and the perturbative
expansion itself is effective for the secular theory (see
also Refs. [14,16]).

Direct three-body calculations.—Now, we move to
direct three-body calculations. We use PN equations of
motion for spinless three-body systems and handle the
three particles equivalently. In addition to the conservative
terms at the Newtonian, 1PN, and 2PN orders (given, e.g.,
in Ref. [17]), we included the dissipative 2.5 PN terms by

using Eq. (41) in Ref. [18]. Unless otherwise stated, we
excluded the time-consuming 2 PN terms that would be
briefly discussed later.
For numerical integration, we apply a fourth-order

Runge-Kutta scheme with an adaptive time-step control
[19]. We terminate our runs, when the inner semimajor axis
decreases to a1 ¼ a1cr or when the instantaneous separa-
tion d1 becomes less than 10M1. The later condition
reflects our perturbative (PN) treatment of nonlinear grav-
ity, but no run encountered this condition. For numerical
evaluation of the orbital elements aj and ej (j ¼ 1, 2), we

use the consecutive maximum [ð1þ ejÞaj] and minimum

[ð1� ejÞaj] of the instantaneous orbital separations dj.
For the direct calculations, we need to specify the initial

mean anomalies lj. Since the three-body problem depends

strongly on initial conditions, we randomly distribute the
initial mean anomalies to examine statistical trends of
evolutions. For each initial inclination Ii and mass combi-
nation in Fig. 2, we made 50 runs and evaluated their
median values and first or third quantiles of the durations
N2m and the residual eccentricities e1cr. For m0 ¼ m1 ¼
0:1 and Ii ¼ 90�, we additionally made 50 runs, including
the 2PN terms, and obtained the median values Nm ¼ 78:3
and e1cr ¼ 0:136 that are close to the corresponding ones in
Fig. 2. Therefore, for our analyses, the 2PN effect would
not be important.
We found that in the direct calculations, the outer

parameters a2 and e2 stay nearly at their initial values,
in agreement with the secular theory. However, Fig. 2

FIG. 2 (color online). (a) The circles (m0 ¼ m1 ¼ 0:1) and
triangles (m0 ¼ 0:11, m1 ¼ 0:09) represent the outer revolution
cycles N2m before the mergers of the inner binaries (slightly
displaced horizontally to prevent overlaps of symbols). The
symbols with lines are obtained from the traditional secular
theory. These without lines are from direct three-body calcula-
tions. For each inclination Ii, in total 50 runs with random initial
mean anomalies are analyzed, and we show the median values
(filled symbols) and the first (25%) and third (75%) quantiles
(open symbols). (b) The residual eccentricity e1cr of the inner
binaries at the semimajor axes a1 ¼ a1cr ¼ 34:6 (corresponding
to the primary GW frequency of 10 Hz for a NSB).
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FIG. 1 (color online). Evolution of the inner semimajor axis a1
and pericenter distance rp1 ¼ ð1� e1Þa1. These results are

obtained with the traditional secular theory. We set m1 ¼ m2 ¼
0:1, m2 ¼ 0:8 with initial inclination Ii ¼ 91� and initial eccen-
tricities e1 ¼ 0:2 and e2 ¼ 0:6. The inner binary merges at the
outer cycles N2m ¼ 1209.
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shows that the duration N2m and residual e1cr are totally
different [20].

To closely look at these discrepancies, we select an
illustrative sample among the 50 runs for Ii ¼ 91� and
m0 ¼ m1 ¼ 0:1. This run ended at N2m ¼ 52:5 with the
residual e1cr ¼ 0:313 (close to the upper quantile in Fig. 2).
If we simply use the outer cycle N2 (as in Fig. 1), the
semimajor axis a1 comes to appear merely as a step
function, and we cannot resolve its rapid final evolution.
Therefore, for Fig. 3, we plot, on a logarithm scale, the
remaining cycles �N � N2m � N2 before the merger.

We can see that up to�N ¼ Oð0:1Þ, the axis a1 is nearly
a constant, but the pericenter distance rp1 has a modulation

period �P2, the orbital period of the outer binary. This
reflects the eccentric motion of the outer point mass m2

characterized by l2, rather than an effective ring in the
secular theory. Temporally neglecting the radiation reac-
tion, we follow Ref. [12] and briefly discuss the impacts of
this discreetness for evolution of the inner specific angular
momentum vector j1 [closely related to e1 and rp1 as

jj1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð1� e21Þ

q
]. Its variation �j1 due to m2 in one

inner orbital revolution depends strongly on the exact
position ofm2 and thus has a stochastic character (denoting
its rms value by �j1).

For �j1 � jj1j, the total variation of j1 after a few outer
orbital cycles could be close to that caused by the corre-
sponding outer ring, and the orbital averaging could
be efficient. However, for a highly eccentric case with
�j1 * jj1j, the averaging method would break down, and
consequently, the associated lower limit for rp1 (mentioned

in the previous section) would be no longer valid. In the
direct three-body integral, the discreetness of m2 is natu-
rally included, and we have possibilities to realize rp1
smaller than the limit obtained with the secular theory.
While we temporally neglected the radiation reaction for
simplicity, we can expect similar differences for our
dissipative systems.

Indeed, in Fig. 3, at the turning point �N � 4� 10�2,
the quantity 1� e1 takes a minimum value, corresponding
to rp1 ¼ 38 (much smaller than Fig. 1). Then, the inner

binary evolves almost independently of the outer body m2

with rapidly decreasing a1 from a1 ¼ 3:0� 105 but nearly
conserving rp1 for a while.

For an orbit with 1� e1 � 1, GW emission is domi-
nated at the pericenter passages, and the radiated energy

there is given as �E��85�ðm0m1Þ2M1=2
1 =ð12 ffiffiffi

2
p

r7=2p1 Þ,
depending strongly on rp1 [21]. At the turning point in

Fig. 3, this amounts to a fraction

Y � 0:19

�
a1

3:0� 105

��
rp1
38

��7=2
(8)

of the inner orbital energy �m0m1=2a1.
Meanwhile, for the secular theory, we can simply esti-

mate the local minimum of 1� e1 from Eq. (7) (with
de1=dt ¼ 0) [6]. This is determined by the balance
between the two effects, the dissipative radiation reaction
working only around d1 ¼ Oðrp1Þ � a1 and the tidal

effect (by m2) operating mainly during d1 ¼ Oða1Þ.
Neglecting the octupole terms, we obtain the minimum
pericenter distance rp1;min ¼ a1ð1� e1Þmin as

rp1;min ’ 60

�
a2=a1
71

��
a1

3:0� 105

�
1=6

�
X

1

��1=3
(9)

with the factor X � sin2Ij sin2!1j 
 1. Thus, even
with the highly conservative setting X ¼ 1, the distance
rp1 ¼ 38 at the turning point in Fig. 3 is not allowed in the

secular theory, and the radiated fraction becomes at most
Y ¼ 0:02, in contrast to Eq. (8). Equation (9) has been used
in previous studies, with additionally evaluating X [6]. But,
along with the insufficient treatment of the discreteness
effect (mentioned earlier), the two temporally separated
effects are directly compared in Eq. (9) without resolving
the inner orbital phase. Roughly speaking, even at d1 �
rp1, a nearly radial inner orbit could be prohibited by the

radiation reaction that intrinsically has no effect there.
Discussions.—Finally, we comment on the implications

of our results for GWastronomy. In Fig. 3, after the turning
point, the inner binary emits pulselike GWs around the
pericenter passages [22]. This waveform has a character-

istic frequency ðM1=r
3
p1Þ1=2=�� 10 Hz that is �30 times

higher than the counterpart in Fig. 1. While Figs. 1 and 3
are given for a specific set of parameters, this shift would
be encouraging for ground-based GW observation, given
the formidable noise walls below �10 Hz [1].
Figure 2 shows that we could have larger residual eccen-

tricities e1cr and also shorter merger times than the estima-
tions by the secular theory. These differences are closely
related to the decrease of the pericenter distances and
suggest a higher merger rate of NSBs in star clusters, as
discussed earlier. For a quasicircular binary, the residual
eccentricity could be probed through the associated phase

FIG. 3 (color online). Similar to Fig. 1, but given from a direct
three-body calculation. The inner binary takes e1cr ¼ 0:313 at
a1 ¼ a1cr and merges at the outer cycle N2m ¼ 52:5. For the
horizontal axis, we use the remaining outer cycle �N � N2m �
N2 before the inner merger.
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modulation of inspiral GWs [3]. For a NSB detectable with
advanced detectors at SNR� 15, the resolution of the
residual value e1cr (at 10 Hz) would be �e1cr ’ 0:01 [3].
Interestingly, this is just between the two predictions in
Fig. 2, and we might discriminate the origins of NSB
mergers with the upcoming GW detectors.
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