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We show how superconductors can be used to couple, initialize, and read out spatially separated spin

qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet

component of the two-electron state partially leaks into the superconductor via crossed Andreev reflection.

This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geome-

try, remains large for dot separations within the superconducting coherence length. Furthermore, we show

that when two double-dot singlet-triplet qubits are tunnel coupled to a superconductor with finite charging

energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than

the coherence length.
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Introduction.—Spin qubits defined in quantum dots [1]
have emerged as a promising candidate for quantum infor-
mation processing, and a number of recent experiments
[2–5] have demonstrated long coherence times and fast
one- and two-qubit gates. If a qubit is encoded in the spin
of one electron, single-qubit rotations can be implemented
with time-dependent magnetic fields [4], or with electric
fields utilizing the spin-orbit coupling [5], and two-qubit
gates by gated control of the exchange interaction between
different dots [1]. An alternative is to encode a single qubit
in a two-dimensional subspace of the spin state of two
electrons in a double dot [3,6] (for example, the singlet and
T0 triplet). Then, the exchange interaction together with a
static difference in the Zeeman splitting on the individual
dots allow for arbitrary single-qubit rotations [7]. Readout
is provided by spin-to-charge conversion, where one spin-
qubit state is prohibited from tunneling out of the dot,
either by a Zeeman splitting [8] (in a single-spin qubit)
or by Pauli spin blockade [3,9] [in a singlet-triplet (ST)
qubit].

However, exchange-based couplings are limited to
qubits in direct proximity with each other. Any large scale
spin-based quantum computer architecture will have to
rely on an alternative coupling mechanism of spatially
separated spin qubits. Recently, much progress has been
made in coupling superconducting qubits via a microwave
field [10–13] (circuit quantum electrodynamics). The same
principles have been considered for spin qubits [14–19],
but unfortunately the coupling between the electron spin
and the cavity field is rather weak.

The Coulomb interaction provides a possible coupling
of spin qubits which is reasonably long ranged. This
requires coupling first the spin and charge degrees of free-
dom, e.g., via spin-orbit coupling [20,21]. Alternatively, a
double-dot ST qubit can be operated in a regime of asym-
metric level positions, where the singlet wave function has
someweight with both electrons on the same dot [i.e., close
to the ð1; 1Þ ! ð0; 2Þ transition, where (m, n) refers to a

state with m (n) electrons on dot 1 (2)]. The different
charge configurations of the singlet and triplet states
then enable a direct capacitive coupling of two ST qubits
[7,22–24]. The range of the capacitive coupling might be
increased by placing floating metallic gates between the
quantum dots [25,26]. Recent proposals also suggest using
ferromagnets [27] or Majorana bound states [28] for two-
qubit couplings. However, achieving strong two-spin-qubit
couplings remains challenging.
In this work, we introduce a proposal which uses a

superconductor to couple spin qubits defined in spatially
separated quantum dots. We show that crossed Andreev
reflection (CAR) [29–32] allows for a large and long-
ranged coupling. In the case of a one-dimensional super-
conductor, which can be realized in a semiconducting
nanowire proximity coupled to a bulk superconductor, we
show that the coupling remains large for quantum dot
separations up to the superconducting coherence length.
In addition, similar to Pauli spin blockade, CAR allows for
qubit initialization and readout. Using a Cooper pair box
(CPB), i.e., a floating superconductor with a finite charging
energy, opens up even more possibilities. In a double-dot
ST qubit, CAR introduces a coupling between the spin-
qubit state and the charge on the CPB. This can be
exploited for strong (hundreds of MHz) capacitive two-
qubit couplings of ST qubits separated by many �m (the
only separation restriction being that the CPB to which
both qubits couple should have a sizable charging energy).
Two-dot coupling via a superconductor.—We start by

considering two quantum dots tunnel coupled to different
points of a superconductor, sketched in Fig. 1, similar to a
so-called Cooper pair splitter [32–36]. In the sketch, the
quantum dots are defined in a semiconducting nanowire
(e.g., InSb or InAs), which is an experimentally promising
system for spin qubits [37,38] and can form good interfaces
with a superconductor [39,40]. However, the results are not
restricted to this particular qubit realization. The system is
described by the HamiltonianH¼P

i¼1;2ðHDiþHTiÞþHS.
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Here, HDi ¼ P
�ni�"i� þUini"ni# describes quantum dot

i, which has a single level with energy "i� ¼ "i � Bi for

spin projection � ¼" , # , occupation ni� ¼ dyi�di�, and
Coulomb charging energyUi. The BCS-type superconduc-

tor is described by HS ¼ P
��E���

y
�����, where the

Bogoliubov quasiparticle operators ��� are related to the

electron operators c�� and cy�� in the standard way and

E�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð"�� ��SÞ2

p
, with �S being the chemical

potential and � the superconducting gap. The coupling
between dot i and the superconductor is described by

HTi ¼
P

��

R
dxti��ðxÞcy��di� þ H:c:, where x is a coor-

dinate in the superconductor. For simplicity, spin-orbit
interaction is not included in the model, but its qualitative
effects will be discussed below.

We now want to calculate the superconductor-mediated
coupling between electron spins on different dots, cf.
Ref. [41], which discussed such coupling in a double-dot
Josephson junction. Focusing on the (1,1) regime (each dot
is occupied by a single electron), we should then calculate
the energy shifts �E� induced by the coupling to the
superconductor, where � ¼ S, T0, T� are the two-electron
singlet and triplet states. We neglect all shifts which are the
same for all �, leaving fourth order terms in the tunnel
Hamiltonian HT ¼ P

iHTi as the leading order contribu-
tion. We then find

�E� ¼ X
n

1

E� � En

��������hGSjhnjHT

1

E� �H0

HTj�ijGSi
��������

2

;

(1)

where E� and En are the unshifted energies of states � and
n, H0 ¼ P

iHDi þHS, and jGSi is the ground state of the
superconductor (it can be verified that only intermediate

states where the superconductor is in its ground state give
an �-dependent contribution).
There are two distinct contributions to �E�, which both

lower the energy of the singlet relative to the triplet states:
(i) exchange, where an electron tunnels from one dot to the
other via the superconductor and then back again, and
(ii) CAR, where one electron from each dot tunnels
into the superconductor to briefly combine into a Cooper
pair before tunneling back again. These processes differ in
the dot charge configuration in the intermediate state, where
for exchange processes one dot is empty and the other
doubly occupied (jni ¼ j02i or jni ¼ j20i), while for
CAR both dots are empty (jni ¼ j00i). For simplicity, we
consider first zero magnetic field B1 ¼ B2 ¼ 0. For the
CAR contribution, Eq. (1) gives �ECAR

T ¼ 0 for any of
the triplet states T ¼ T0, T�, while �ECAR

S ¼ j�j2="�,
where"� ¼ "1 þ "2 ��S. TheCARamplitude is given by

� ¼ X
�i

�ffiffiffi
2

p
E�

1

E� � "i

Z
dx1dx2t1�"ðx1Þt2�#ðx2Þ: (2)

Assuming a finite tunnel coupling only between dot i and a
single point xi;0 in the superconductor, we can write ti�� ¼
ti�ðxi � xi;0Þc ��ðxi;0Þ, where c ��ðxÞ is a real space wave
function in the superconductor. With the approximation
E� � "i � E�, an analytic solution can easily be found
(we come back to the full "-dependent result below). For
a three-dimensional ballistic superconductor [32,42],
one finds � / ðkF�xÞ�1 expð��x=��0Þ, where �x ¼
jx1;0 � x2;0j, �0 is the superconducting coherence length,

and kF is the Fermi wave vector of the superconductor.
Although �0 can be hundreds of nm, the algebraic prefactor
limits the range of the interaction, since in typical metals

k�1
F � �A. The situation might be slightly better for a dif-
fusive superconductor, where this prefactor is replaced by

[43] ðkF�xÞ�1=2ðkFlÞ�1=2, where l is the mean-free path.
However, the exponential suppression is more severe in this

case, with �0 being replaced by � � ffiffiffiffiffiffiffi
�0l

p
.

To achieve a long-ranged coupling, one should reduce
the dimensionality of the superconductor. This makes the
algebraic prefactor less severe, since it arises from sum-
ming over different paths between x1;0 and x2;0 with vary-

ing phases. For a single-channel ballistic one-dimensional
superconductor, we find [keeping "i in Eq. (2)]

� ¼ ffiffiffi
2

p
t1t2	

X
i

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � "2i

q
2
4�þ 2tan�1

0
@ "iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � "2i

q
1
A
3
5

� sinðkF�xÞe��x=��0 ; (3)

where 	 is the normal-state density of states at the Fermi
energy, and we have assumed @

2k2F=2m � � and linear-
ized the spectrum around kF. There is no algebraic sup-
pression, and � remains large as long as �x & �0. In a
setup as in Fig. 1, a one-dimensional superconductor

FIG. 1 (color online). Coupling quantum dot spins via a
superconductor. Upper panel: Two quantum dots defined within
a semiconducting nanowire, tunnel coupled to a superconductor
(the main coupling is to the wire underneath the superconductor,
which is a one-dimensional superconductor because of the
proximity effect). The gray gates control the dot energy levels
and the tunnel amplitudes. A CAR process is illustrated, where
one electron from each dot tunnels into the superconductor and
combines into a Cooper pair. Lower panel: Energy-level sketch
of the system.
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results from proximity-inducing superconductivity in a
semiconducting nanowire [39,40]. In fact, the experiments
in Ref. [35] revealed an unexpectedly large CAR ampli-
tude, likely due to the reduced dimensionality of the
proximity-induced superconducting wire connecting the
dots. Figure 2(a) shows the CAR-induced singlet-triplet
splitting j�ECAR

S j as a function of "1 and "2, with � given

by Eq. (3). The shift is of course largest close to the CAR
resonance at "� ¼ 0, but we note that at a given "�, it can
be increased by asymmetrically gating the dots, i.e., by
operating at "1 > "2 or "2 > "1. An analogous calculation
of the exchange contribution gives �Eex

T ¼ 0 and �Eex
S ¼P

ij
ij2=ð"� � E02;iÞ, where E02;i ¼ 2"i þU and the ex-

change amplitude 
i is given by an expression similar to
Eq. (2). U is typically large, several meV in nanowire dots,
and we neglect the exchange contribution in the following
(it merely gives rise to an additional singlet-triplet split-
ting, which is small and lacks significant gate dependence
around our operating point with large CAR).

Finite magnetic field and/or spin-orbit interaction does
not qualitatively change the above results. The situation is
analogous to coupling between (1,1) states and the (0,2)
singlet in double dots without coupling to a superconductor
[44]. At zero magnetic field, only one of the four (1,1)
states can undergo CAR. At finite magnetic field, two (1,1)
states split off in energy similar to T� but in the presence of
spin-orbit interaction acquire a finite CAR amplitude,
except for at specific field angles [44,45]. CAR splits the
remaining two degenerate states into one which can

undergo CAR and one which cannot, and we can still refer
to the former as S and the latter as T0.
In a setup as in Fig. 1, CAR can be used for controlled

spin manipulation by for a certain time either moving the
dot energy levels close to "� ¼ 0 or always staying close
to resonance but controlling the tunnel couplings t1;2.
However, to minimize decoherence due to charge noise,
one should avoid moving too close to "� ¼ 0, where the
singlet state acquires a significant (0,0) component.
Initialization can be done by moving both initially empty
dot levels down through the CAR resonance adiabatically
(with respect to �), which fills the double dot with two
electrons in a singlet state (Cooper pair splitting). If each
dot is tunnel coupled to a normal electrode biased to drive
an electron current into the superconductor, the triplet
states act as blocking states since they do not allow for
CAR [46]. Similar to Pauli spin blockade, this can be used
to prepare triplet states and for readout through spin-to-
charge conversion. Readout can also be done through
charge detection by adiabatically moving both dot levels
up through the CAR resonance, thereby selectively empty-
ing the singlet state.
The geometry discussed here can be used to couple two

single-spin qubits, in which case the shift �ES allows for
two-qubit gates, or to define a nonlocal ST qubit, in which
case �ES together with a dot-dependent Zeeman splitting
allows for universal single-qubit rotations. Alternatively,
we can consider one of the geometries suggested in
Fig. 2(b) with two different ST qubits A and B, where
each double-dot ST qubit is internally coupled by normal
exchange, while there is a long-distance coupling between
one dot in each qubit via the superconductor. This situation
is analogous to two exchange-coupled ST qubits [47] but
with a more long-ranged interaction.
Cooper pair box and two-qubit couplings.—A single ST

qubit coupled to a superconductor can be described by the
effective Hamiltonian

HST ¼ "�jSihSj þ "�jT0ihT0j þ �jSih00j þ H:c:; (4)

where we have integrated out the quasiparticle degrees
of freedom of the superconductor, leaving an effective
CAR amplitude �ð"1; "2Þ, given by Eq. (3) for a one-
dimensional superconductor.
We now consider coupling instead to a small floating

superconductor (CPB), with a well-defined number of
Cooper pairs N and a finite charging energy EC. The
Hamiltonian (4) remains valid in this case, but we need
to also keep track of the superconducting charge state jNi,
and because charge is conserved in the total system, jS=T0i
should be interpreted as jS=T0ijN0i, while j00i corre-
sponds to j00ijN0 þ 1i. "� is now measured relative to
the energy of the jN0i ! jN0 þ 1i transition. Next, we
consider two different ST qubits coupled to the same
CPB (see Fig. 3), where the dots of the different qubits
are separated by more than �0, such that there is no CAR

FIG. 2 (color online). (a) j�ECAR
S j as a function of "1 and "2,

with � from Eq. (3), �S ¼ 0, and B1 ¼ B2 ¼ 0. At the CAR
resonance (dashed line at "� ¼ 0), the perturbatively calculated
shift diverges. We focus on the regime "� < 0, where the (1,1)
charge configuration has lowest energy. (b) Two different sys-
tems with CAR-induced coupling between two ST qubits, de-
fined either in the same wire or in different wires (the CAR
amplitude is reduced in the latter case).
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(or exchange) between them. However, because of the
conservation of total charge, a state where both double
dots are empty must correspond to two Cooper pairs being
added to the CPB. This gives rise to a capacitive coupling
term

VAB ¼ 4ECj00Aij00Bih00Ajh00Bj; (5)

where superscripts refer to the two different ST qubits (we
will leave out the superscripts when referring to either one
of the two qubits). Equation (5) contains a projector unto
the state where both double dots are empty, which is not a
part of the normal computational space for an ST qubit.
However, a qubit initially in jSi can be brought into j00i by
adiabatically (with respect to �) increasing "� (moving
along a red line in the spectrum in Fig. 3). If both qubits A
and B are brought across the jSi ! j00i avoided crossing
for a finite time and then back again, Eq. (5) gives rise to a
�A

z � �B
z -type coupling. The coupling strength is in prin-

ciple only limited by the charging energy of the CPB, but
operating above the jSi ! j00i anticrossing means that
the spin superposition states have been fully converted
into superpositions of charge degrees of freedom, resulting
in short coherence times. It is likely better to stay below the
anticrossing, where we can define effective computational

states jT0i and j~Si � ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
ÞjSi þ �j00i, where

� ¼ �j�j="� � 1 (note that "� < 0). Because of this
small gate-dependent fraction of empty states which is
added to the singlets, the two-qubit interaction to leading
order in � and EC="� is given by

VAB � 4ECð�AÞ2ð�BÞ2j~SAij~SBih~SAjh~SBj (6)

� 4ECð�AÞ2ð�BÞ2�A
z � �B

z ; (7)

where the second line holds up to single-qubit rotations.
With �A ¼ �B ¼ 50 �eV [48], and operating at �A ¼
�B ¼ 1=3, we find VAB � 0:5 �eV� 100 MHz if 4EC ¼
50 �eV. This tiny value for EC would allow for a very long
CPB. Increasing EC increases VAB, but Eq. (6) only holds
for jEC="�j � 1 and VAB saturates for larger EC [with the
same � and � as above, VAB � 300 MHz for 4EC ¼
500 �eV is found from Eqs. (4) and (5)]. To reach large
values while keeping � small requires a large �, which can
be achieved in a few-channel nanowire with a high-quality
interface with the superconductor, as discussed above.
Note that it is not necessary to have EC larger than tem-
perature, as long as the CPB is well isolated from outside
sources of quasiparticles, such that N is conserved on the
time scale of the two-qubit operations.
Conclusions.—We have demonstrated that a supercon-

ductor can be used to mediate a long-distance coupling
between spin qubits through CAR, which in a one-
dimensional superconductor remains large for distances
up to the superconducting coherence length. Thus, a su-
perconductor can be used to couple spatially separated spin
qubits or to define a nonlocal double-dot ST qubit. CAR-
based initialization, manipulation, and readout would also
provide definite evidence of the entanglement of electron
spins in a Cooper pair splitter. Furthermore, coupling
two different ST qubits to the same CPB introduces a
coupling between the spin qubits and the charge on the
CPB, which can be used for truly long-distance (many�m)
two-spin-qubit gates with potential for fast operation (hun-
dreds of MHz).
Finally, we mention that this charge-spin coupling

has the potential to allow coupling of even more distant
ST qubits through circuit quantum electrodynamics
[10,12,13]. The two ST qubits in Fig. 3 could be coupled
to two different CPBs, which are then capacitively coupled
to each other via a superconducting transmission line. This
would allow the very large dipole moment of supercon-
ducting islands to be exploited to couple spins.
We thank C.M. Marcus, J. Danon, and A. Higginbotham

for discussions. The Center for Quantum Devices is funded
by the Danish National Research Foundation.
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