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In this Letter, we show that the electromagnetic duality symmetry, broken in the microscopic Maxwell’s
equations by the presence of charges, can be restored for the macroscopic Maxwell’s equations. The
restoration of this symmetry is shown to be independent of the geometry of the problem. These results
provide a tool for the study of light-matter interactions within the framework of symmetries and
conservation laws. We illustrate its use by determining the helicity content of the natural modes of
structures possessing spatial inversion symmetries and by elucidating the root causes for some surprising

effects in the scattering off magnetic spheres.
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Symmetries, both continuous and discrete, are a power-
ful tool for studying nature. According to Noether’s theo-
rem [1], any continuous symmetry of a nondissipative
system gives rise to a conserved quantity in the dynamic
equations. In modern algebraic terms we say that when a
system is invariant under the continuous transformation
generated by a given operator, the observable represented
by that operator is a conserved quantity. For example,
rotational and translational invariance are associated with
the conservation of angular momentum and linear momen-
tum because, as transformations, rotations are generated by
the components of angular momentum and translations are
generated by the components of linear momentum.

In this Letter, we will study a nongeometrical symmetry in
electromagnetism: electromagnetic duality. Electromagnetic
duality is a transformation where the roles of electric and
magnetic fields are mixed:

E — E, = E cosf — H sind,
H — Hy = E sinf + H cosé.

(M

The typical exchange, E — H and H — —E, corresponds
to setting 6§ = —(#/2). In the absence of charges and
currents, Eq. (1) is a symmetry of Maxwell’s equations: If
the electromagnetic field (E, H) is a solution of the free
space Maxwell equations, then the field (E,, Hy) is also a
solution. In 1965, Calkin [2] showed that helicity was the
conserved quantity related to such symmetry.

Helicity is defined ([3], see Chap. 8.4.1) as the projection
of the total angular momentum J onto the linear momen-
tum direction P/|P|, i.e., A =J-P/|P|. In the case of
photons ([4], see Chap. 2.5), helicity takes the values *1.
It is possible to intuitively understand the meaning of
helicity when considering the wave function of the particle
in the momentum representation, that is, as a superposition
of plane waves. In this representation, helicity is related to
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the handedness of the polarization of each and every plane
wave. The helicity of the particle is well defined only when
all the plane waves have the same handedness with respect
to their momentum vector, including both propagating and
evanescent plane waves ([5], see Appendices A and B).
Calkin showed that, as an operator, helicity generates dual-
ity transformations. Since that seminal work, the role of
helicity as the generator of duality symmetry transforma-
tions for the free space Maxwell’s equations has been
reported several times [6—8].

In 1968, Zwanziger [9] studied this free space invariance
and conservation law in a quantum field theory with both
electric and magnetic sources. He found that when a
simultaneous transformation akin to Eq. (1) is allowed
among the two kinds of sources, duality symmetry is
maintained. Without this extra source transformation,
Eq. (1) ceases to be a symmetry of the microscopic
Maxwell’s equations when sources are present. This is
the current status of the duality symmetry in material
systems. In this Letter, we show that the electromagnetic
duality symmetry, broken for the microscopic Maxwell’s
equations by the presence of sources, can be restored for
the macroscopic Maxwell’s equations for material systems
without free sources, characterized by scalar electric per-
mittivities and magnetic permeabilities. The restoration
condition for a system composed of different isotropic
and homogeneous domains depends only on the materials
and is independent of the shapes of the domains. When the
system is dual, the helicity of the light interacting with it is
preserved. After deriving the restoration condition, we
provide two examples of its application. From now on,
we will use a harmonic decomposition of the fields and
assume a exp(—iwt) dependency with the angular fre-
quency w. Additionally, we will work in the representation
of space dependent vectorial fields, also known as the real
representation.
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The expression of the helicity operator for monochro-
matic fields in the real representation can be obtained
directly from the definition of helicity, using

J-P=S+L)-P=S-P=VX, 2)

where S and L are, respectively, the spin and orbital angular
momentum operators. The third equality follows from the
orthogonality of L. = r X P and P. The last equality is
given in [10] [see expression (XII1.93)]. Then, since for
monochromatic fields |P| is equal to the wave number k:
A=kVX.

We start the derivation by setting convenient units of
€y = o = 1 for the vacuum electric and magnetic con-
stants (thus ¢y = 1 and k = w). This convention will be
used throughout the Letter. We can then use Eq. (2) to write
the free space Maxwell equations as

V XE =ioH=H = —iAE,
VXH=—iwE = E = iAH.

3)

Equation (3) already reveals that A is an operator that
transforms electric fields into magnetic fields and vice
versa. In the same way that angular momentum generates
rotation matrices [11], let us use A as the generator of a
continuous transformation parametrized by the real num-
ber 0: Dy = exp(i@A). The explicit expression for the
transformation that D(6) performs on the fields is easily
derived by noting that A? is the identity operator for
Maxwell fields. This is a consequence of Eq. (3), valid
for all E and H. Using that A% = I, the 3 X 3 identity
matrix, and the Taylor expansion of the exponential, the
continuous transformation generated by helicity can be
written as follows:

Dy = exp(i@A) = cosfI + isinfA. 4)
The application of Dy to electromagnetic fields reads

Ey = (cosfI + isindA)E,
H, = (cosfI + isindA)H,

(&)

which, after using Eq. (3) again, becomes the duality trans-
formation of electromagnetic fields written in Eq. (1).

We will now show that duality symmetry can be restored
in the macroscopic Maxwell’s equations independently of
the shapes of the material domains involved.

We consider an inhomogeneous medium {2 composed of
several material domains with arbitrary geometry. We
assume that each domain i is homogeneous and isotropic,
and fully characterized by its electric €; and magnetic u;
constants (we again use €y = wy = 1). In each domain, the
constitutive relations are hence B = u,;H, D = ¢,E, and

the curl equations for monochromatic fields read
VXH=—iweE, VXE =iowuH. (6)

Using A = k'VX and w = k, = k/./€;t;, we obtain

AH = —i\/EE, AE = i\/EH. (7)
M €;

Note that to arrive at this result, the fact that the wave
number in each medium is k = k(./€; ; has to be used in
the expression of the helicity operator. Now, we can nor-

malize the electric field E — +/€;/ u;E, to show that inside
each of the domains, we can recover the exact form of
Maxwell’s equations in free space, Eq. (3). Clearly, if we
want to have a consistent description for the whole medium
(), the normalization can only be done when all the differ-
ent materials have the same ratio €;/u; = a V i. In this
case, the electromagnetic field equations on the whole
medium () are invariant under the duality transformations
of Eq. (1).

We need to study the matching of the fields at the
interfaces between the different domains, where the mate-
rial constants are discontinuous. In the absence of free
currents and charges, the electromagnetic boundary con-
ditions impose the following restrictions on the fields: fi X
(E; —Ey)) =0, A X(H, —Hy) =0, i-(D; —D,) =0,
and i - (B; — B,) = 0, where 1 is the unit vector perpen-
dicular to the interface. The boundary conditions can be
seen as a real space, point to point transformation of the
fields. For example, at a particular point r on the interface
between domains 1 and 2, the boundary conditions may be
interpreted as the following linear transformation:

E,(r E(r
[ 2(r) ] = diag(l, LS, 1,ﬂ)[ 1) ] @)
H,(r) € Mo/ H,(r)
where we have oriented our Cartesian reference axis so that
Z = n.
On the other hand, the duality transformation, Eq. (1),
may also be written in matrix form, rewriting Eq. (5):

E, Icos§ —Isind || E U E

I:HH:I |:Isin6‘ Icosf i||:Hi| 0|:Hi|'
It is a trivial exercise to check that the transformation
matrix of Eq. (8) commutes with U, if and only if €,/ =
€,/ w,. In such a case, the fields in each of the two media
can be transformed as in Eq. (1) while still meeting the
boundary conditions at point r. We can now vary r to cover
all the points of the interface and repeat the same argu-
ment: The fact that U, does not depend on the spatial
coordinates allows us to reorient the reference axis as
needed to follow the shape of the interface between two
media (i = Z). The derivation is hence independent of the
shape of the interface, and we can say that the boundary
conditions are invariant under duality transformations
when €,/u,; = €,/u,. The above derivations show that
both the equations and the boundary conditions in () are
invariant under (1) when

€;/u; = constant V domain i. 9
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As a conclusion, we can state that independent of the
shapes of each domain, a piecewise homogeneous and
isotropic system has an electromagnetic response that is
invariant under duality transformations if and only if all the
materials have the same ratio of electric and magnetic
constants. In this case, since helicity is the generator of
duality transformations, the system preserves the helicity
of the electromagnetic field interacting with it.

Equation (9) can be verified in two of the few analytically
solvable electromagnetic  scattering  problems: a
planar multilayer system and a sphere. When imposing
condition (9), the Fresnel coefficients are identical for the
two (TE and TM) polarizations for any plane wave imping-
ing on the multilayer. This implies preservation of the
circular polarization handedness of any plane wave, i.e.,
helicity preservation. The same is true for the Mie coeffi-
cients representing the scattering of magnetic and electric
multipoles off a sphere: They are identical when Eq. (9) is
met, implying preservation of the multipoles of well-defined
helicity which are linear combinations of the electric and
magnetic ones [[3], see expression (11.4-19)]. These deri-
vations are included in the Supplemental Material [12].

In order to illustrate the independence of helicity conser-
vation from geometry in more complex systems we per-
formed numerical simulations. We analyzed the helicity
change (Fig. 1) for two different dielectric structures in
free space: A circular cylinder, which is symmetric under
rotations along its axis, and a curved pan-flute-like structure
without any rotational, translational, or spatial inversion
symmetry. Two versions of each structure were simulated,
corresponding to two different materials: The first one
models the properties of silica by setting € = €55 =
2.25and u = pgjase = 1. Inthe second material we enforce
duality, Eq. (9), by setting € = p = €41, = 2.25. The
incident field is a circularly polarized plane wave (i.e., it
has well-defined helicity) with a momentum vector parallel
to the red arrows in the figure. In the case of the cylinder, the
momentum direction is aligned with the axis of the cylinder.
Figure 1 shows that helicity is conserved independently of
the spatial symmetries, whenever Eq. (9) is fulfilled, i.e.,
under conditions of duality symmetry.

The result in Eq. (9) is in agreement with Bialynicki-
Birula’s wave equation for photons propagating in a linear,
time-independent, isotropic, and inhomogeneous medium.
In [13] (see Sec. 2), he shows that the two helicities of
the photon are only coupled through the gradient of

/1 (r)/e(r). Relation (9) is often referred to as the surface
impedance matching condition. To the best of our knowl-
edge, its simultaneous connection with helicity preserva-
tion and duality symmetry has not been considered before.
This connection allows the relationship between helicity
and duality to be used as a tool for the study of light-matter
interactions. The fact that the restoration condition in
Eq. (9) is independent of geometry makes the use of this
tool very simple as we will now show.
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FIG. 1 (color). Impact of the different symmetries on the field
scattered by two dielectric structures. The upper row shows the
scattered intensity for a symmetric cylinder and the lower row
for a pan-flute-like shape without any rotational, translational, or
spatial inversion symmetry. The length and diameter of the
cylinder are 200 nm. The pan flute is made of cylinders of
different lengths and diameters; the longest one is 200 nm
long and the total pan flute’s width is around 200 nm. In panels
(a) and (c), the structures have € = 2.25, u = 1, while in panels
(b) and (d) we enforced duality symmetry by setting € = pu =
€qlass = 2.25. The incident field is a plane wave of well-defined
helicity equal to 1, a momentum vector pointing to the positive z
axis, and a wavelength of 633 nm. Its electric field is (X +
i$)/~/2 exp(kz — wt). The left-half side of each subfigure corre-
sponds to the scattered field with helicity equal to the incident
plane wave A . ; the right half is for the opposite helicity A_. The
intensities of the two helicities (*) are computed as |E *+ iH|%.
In [13] (see Sec. 2.1), it is shown that E = {H (with our choice of
units) separates the two helicity components. The calculation
plane is perpendicular to the z axis and 20 nm away from the
surface of the scatterers opposite to the one where the incident
field comes from. The calculation area is 700 X 700 nm. For
color scaling purposes, the right-half side is multiplied by the
factor in the upper right corner. The (lack of) cylindrical sym-
metry of the structures results in (non-)cylindrically symmetric
field patterns, which is consistent with the geometry of each
case. On the other hand, both scatterers behave identically with
respect to the conservation of helicity, which is seen to depend
exclusively on the electromagnetic properties of the material.
The Supplemental Material [12] contains another simulation
illustrating the fact that helicity preservation is independent of
the angle of incidence of the plane wave.

We will now turn to demonstrate the practical value of
this result. We will show that it can be applied to better
understand systems with spatial inversion symmetries and
also to calculate properties of the scattering off magnetic
spheres.

060401-3



PRL 111, 060401 (2013)

PHYSICAL REVIEW LETTERS

week ending
9 AUGUST 2013

Consider a general linear system interacting with the
electromagnetic field, which remains invariant under a
spatial inversion transformation 7, i.e., either a point inver-
sion (T =11, with II the parity operator) or a mirror
operation across the plane perpendicular to @ [T = My =
I1R4 (), where R;(7r) is a rotation of 7 radians along the
0 axis]. Many structures of fundamental and technological
interest possess one or several symmetries of this kind, for
instance nanoapertures in metallic films [14] and split-ring
resonators [15]. We now show that, quite generally, the
resonant natural modes of the system are linear superposi-
tions of states of well-defined helicity. Since T leaves the
system invariant, its eigenstates (natural modes) can be
chosen to be eigenstates of 7. Then, because 7 is a
Hermitian operator and T2 = 1, it follows that T has two
eigenvalues equal to 1. The eigenstates of T, and hence
those of the system, are of two different kinds, symmetric
(s) and antisymmetric (a) under the action of 7. Now, since
parity and helicity anticommute and A commutes with any
rotation, then T and A also anticommute. T, as parity, flips
the helicity of any state it acts on. As a consequence,
recalling that A2 =1 as well, the eigenstates of T are
sum and subtractions of the eigenstates of A. The converse
is also true. Symbolically,

|+>=%<|s>+|a>>, I—>=\/%(Is>—|a>), (10)
@)= () =) I == — =) D
a —\/5 , s _\/5 .

The eigenstates of the system under consideration will
be decomposable as indicated by Eq. (11). In general, the
symmetric and antisymmetric eigenstates of the system
will be nondegenerate, and their excitation will maximally
mix the two helicity eigenstates. For example, in planar
multilayer systems, which have mirror symmetries for all
planes containing the stacking direction, the eigenmodes
can be chosen to be either symmetric or antisymmetric
with respect to one of the mirror operations. When the
multilayer system presents resonances, as in the case of the
surface modes in metal-dielectric interfaces, this leads to
symmetric or antisymmetric modes. These modes mix both
helicities maximally. The same physical phenomena hap-
pen in cylindrical scatterers, such as cylindrical nanoholes
in metallic layers. Again, the cylindrical symmetry also
implies mirror symmetries and the eigenmodes of the
structure maximally mix the two helicity modes. This
effect can be used to experimentally test plasmonic reso-
nances by monitoring helicity changes.

As we have shown, though, when the system can be
characterized by scalar electric and magnetic constants, the
duality symmetry can be restored independently of the
geometry of the system. The system can hence possess
both duality symmetry and some spatial inversion

symmetry, which implies that the symmetric and
antisymmetric eigenstates have the same eigenvalue.
We now analyze an interesting example of such a degen-
erate case.

Consider the unusual scattering effects for magnetic
spheres reported by Kerker [16]. He found that upon
scattering off a vacuum embedded sphere with €/u = 1,
the state of polarization of light is preserved independently
of the scattering angle. The root cause of such interesting
phenomenon is related to our previous discussion: the
simultaneous invariance of the system with respect to
duality transformations due to the materials, and mirror
operations through planes containing the origin of coordi-
nates due to the geometry. In the helicity basis, the 2 X 2
scattering matrix between an incident and a scattered plane
wave ([4], see Chap. 3) must be diagonal because of
helicity preservation. Additionally, it must also preserve
the linear polarizations parallel and perpendicular to the
plane containing the two plane wave momentum vectors,
because a mirror operation across such a plane leaves the
sphere and both momentum vectors invariant. Then, using
Eq. (10) it can be easily shown that all the 2 X 2 scattering
matrices are indeed diagonal and hence preserve the state
of polarization between any pair of incident and scattered
plane waves.

In the same paper, Kerker finds that a plane wave imping-
ing on such a dual sphere does not produce any backscat-
tered field (at a 180 deg scattering angle). This effect, which
has been referred to as an anomaly [17], can be easily
understood using our result. A backscattered plane wave
will have a linear momentum equal to minus the linear
momentum of the impinging plane wave. Because of dual-
ity symmetry, the helicities of the two plane waves should
be equal. Since A =J:P/|P|, the angular momentum
along the plane waves axes must then change sign to com-
pensate for the linear momentum sign change, but this
is impossible due to the rotational symmetry of the
sphere. The only solution is that no backscattered plane
wave can exist.

In this Letter, we have shown that the restoration of
duality symmetry is possible for the macroscopic
Maxwell’s equations, even though the microscopic equa-
tions are rendered asymmetric by the presence of charges.
The restoration of the symmetry is independent of the
geometry of the problem: a system made of piecewise
isotropic and homogeneous domains of different materials
characterized by electric and magnetic constants (€;, u;) is
invariant under duality transformations if and only if
€;/m; = a V i. This result is independent of the shapes
of the domains. With this result, the known relationship
between helicity and duality transformations, namely, that
the former is the generator of the latter, is turned into a
simple and powerful tool for the practical study of
light-matter interactions using symmetries and conserved
quantities. In particular, in this Letter we have used it to
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establish that, quite generally, the eigenstates of a system
with some kind of spatial inversion symmetry are sums and
subtractions of modes with well-defined helicity. Also,
interesting scattering effects of magnetic spheres have
been shown to arise from simultaneous duality, cylindrical,
and mirror symmetries. Additionally, in [5], this tool
allowed us to prove the inconsistency of the concept of
optical spin to orbital angular momentum conversion in
focusing and scattering, and to propose a substitute frame-
work based on helicity.

Our results may be useful in other fields. For example,
they may prove important in the field of metamaterials and
transformation optics [18], which is dramatically extending
the range of wavelengths where effective electric and mag-
netic constants can be engineered. The transfer of helicity
between light and matter remains an open line of research,
which could have importance in the fields of plasmonics and
“spintronics” [19], where the control of the helicity of
electrons is crucial. Finally, it can be seen that the same
tool that we have developed here can be successfully used to
explain effects in electron beams [20]. This parallelism is
an encouraging sign toward the possibility of simulating
particle interactions on an optical table [21].

This work was funded by the Centre of Excellence for
Engineered Quantum Systems (EQuS). G.M.-T is also
funded by the Future Fellowship program (FF).
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