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Distinct channels of interaction in a complex networked system define network layers, which coexist

and cooperate for the system’s function. Towards understanding such multiplex systems, we propose a

modeling framework based on coevolution of network layers, with a class of minimalistic growing

network models as working examples. We examine how the entangled growth of coevolving layers can

shape the network structure and show analytically and numerically that the coevolution can induce strong

degree correlations across layers, as well as modulate degree distributions. We further show that such a

coevolution-induced correlated multiplexity can alter the system’s response to the dynamical process,

exemplified by the suppressed susceptibility to a social cascade process.

DOI: 10.1103/PhysRevLett.111.058702 PACS numbers: 89.75.Hc, 89.75.Fb

Introduction.—Agents in complex systems interact in
many ways: People are influenced by multiple channels
of social interaction such as friendship and work partner-
ship, and multiple means of transportation such as avian
and ground transportation constitute the global transporta-
tion infrastructure [1–3]. Such systems can best be repre-
sented as multiplex networks with multiple types of links.
Each link type in the system defines a network layer,
which is by no means in isolation but coexists and coop-
erates with other layers to fulfill the system’s function.
Such coupling and interplay of network layers can result
in emergent structural and dynamical impact in nontrivial
ways [4–10], rendering the understanding based on the
single-network approach incomplete.

In real-world complex systems, either self-organized or
man-made, the coupling between network layers is not
completely random but structured, a property referred to
as correlated multiplexity [5]. Specifically, the degree of a
node (degree is the number of links a node has) in one
layer and that in another are often strongly correlated.
Expectedly, she who has many friends tends to have
many friendly co-workers in the workplace; a hub-airport
city is most likely a rail hub, and so on. Such a structured
coupling of network layers is shown to affect the system’s
connectivity and robustness properties [5,11–13].
However, its underlying evolutionary mechanism has not
yet been systematically investigated.

In this Letter we propose the coevolution of network
layers as an evolutionary mechanism for the correlated
multiplexity in growing multiplex networks. To motivate
the idea, let us turn back to the transportation network
example. Suppose one were to establish a new air route.
In doing so, it might be reasonable to consider not only the
candidate city’s avian connectivity, but also its ground
connectivity, such as rail and highway infrastructure in
order to maximize the synergy. That is, layers in a multi-
plex system do not merely coexist, but they coevolve,
affecting and entangling each other’s growth. Elucidating

the role of coevolution as a modeling framework of
multiplex networks is the main aim of this Letter.
To substantiate the key idea, we introduce and study a

class of minimalistic growing multiplex network models
with coevolving layers based on preferential attachment as
working examples. We show by analytic calculations
assisted by extensive simulations that coevolution can
profoundly affect the structure of multiplex systems. Not
only can it shape the correlated multiplexity, it can also
modulate the degree distributions. We further demonstrate
that multiplex structures with different strength of coevo-
lution respond differently to a cascade process, exemplify-
ing the dynamical signature that coevolution can imprint.
Note that coevolution of a (single) network structure and
the dynamical process on it has been studied [14]. Yet, the
coevolution effect of different layers within a multiplex
system has remained unexplored.
Modeling framework.—To enlighten ourselves on the

role of coevolution, we consider a minimalistic model of
coevolving multiplex networks [Fig. 1(a)]. Each step, a
new node enters into the system and in each layer estab-
lishes a link to an existing node. The probability that an
existing node would receive a link from the new node gives
the growth kernel � of its degree [15]. For degree-based
growth, the coevolution of network layers can be formu-
lated in the way that the growth kernel of a node’s degree in
layer� is not only dependent on its degree in that layer, k�,

but also on its degrees in other layers [16]:

�� ¼ fðk�; k�; . . . ; k�; . . . ; k‘Þ; (1)

where ‘ is the total number of layers in the system and we
use Greek subscripts to denote the layer index. We are
interested in not only the degree distributions of layers
grown under Eq. (1), but also the correlation of degrees
across layers to address the correlated multiplexity in the
multiplex system. For the latter, we calculate the Pearson
correlation coefficient ��� between the degrees of a node

in the two layers � and � [1], given as
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��� � hðk� hkiÞðl� hliÞi
�k�l

¼ hkli � hkihli
�k�l

; (2)

where we used a simpler notation that k ¼ k� and

l ¼ k� and hki (�k) is the mean (standard deviation) of
node degrees in the given layer.

Henceforth, we focus our analyses on a class of growth
kernels based on linear preferential attachment [15,19] and
systems with ‘ ¼ 2 layers (duplex system) for simplicity,
although the main messages would be applicable to more
general cases.

Mutually dependent layers.—Let us suppose the growth
kernels for the two layers are given by

�� / ½ð1� �Þðk� þ aÞ þ �ðk� þ aÞ�; (3a)

�� / ½�ðk� þ aÞ þ ð1� �Þðk� þ aÞ�: (3b)

Here, � is a parameter that controls the strength of coevo-
lution; hence, it is called the coevolution factor. As � > 0
increases, the two layers coevolve mutually depending
more strongly on each other. a is the shift factor introduced
to control the layer’s native degree exponent. Recall that
the growing network with �ðkÞ / ðkþ aÞ has an asymp-
totic power-law degree distribution, PðkÞ � k��, with the
exponent � ¼ 3þ a [19].

The case with a ¼ 0 (simple preferential attachment
[15]) is particularly illustrative as it is amenable to most
detailed analytic results as well as efficient numerical
simulations. The rate equation for node i’s degree in layer
� takes a simple form as

@ki;�
@t

¼ ð1� �Þki;� þ �ki;�
2t

; (4)

and similarly for the layer �. The solution of Eq. (4) takes
the same form as the original Barabási-Albert model as

kiðtÞ ¼ ðt=tiÞ1=2 for both layers, where ti is the arrival time
of node i [15]. This leads to scale-free network layers with
PðkÞ � k�3 for both layers, irrespective of the coevolution
factor �. The degree correlation is, however, crucially
affected by the coevolution [Fig. 1(b)].
To see this, we set up a rate equation for the number of

nodes having degree k on the layer � and l on the layer� at
time t, denoted as Ck;lðtÞ, which reads

dCk;l

dt
¼ ½�ð�Þ

k�1;lð1��ð�Þ
k�1;lÞ�Ck�1;l

þ ½�ð�Þ
k;l�1ð1��ð�Þ

k;l�1Þ�Ck;l�1

þ ½�ð�Þ
k�1;l�1�

ð�Þ
k�1;l�1�Ck�1;l�1

� ½1� ð1��ð�Þ
k;l Þð1��ð�Þ

k;l Þ�Ck;l þ 	k1	l1; (5)

where the parenthesized superscript is used to denote the
layer index. Changing the variable by Ck;lðtÞ ¼ tck;lðtÞ and
introducing the generating function for ck;lðtÞ [20], one can
obtain the following coupled differential equations for hkli
and hk2i.

�
�� �2 þ ð1� �Þ2

4t

�
hkli þ t

@hkli
@t

¼ �hk2i þ �ð1� �Þ
2t

hk2i þ 1; (6a)

�hkli ¼ �hk2i þ t
@hk2i
@t

� 2: (6b)

Solving for hk2i, one obtains

hk2i ¼
8<
: 2 lnðtÞ � c1Ei

�
� 1

4t

�
þ c2 ð0< � � 1Þ;

2 lnðtÞ þ d1 ð� ¼ 0Þ;
(7)

where EiðxÞ is the exponential integral [21] and c1, c2 and
d1 are constants determined by boundary conditions.
When � ¼ 0, Eqs. (6) decouple and from Eq. (6a) one

obtains

hkli ¼ exp

�
� 1

4t

��
c3 � Ei

�
1

4t

��
; (8a)

where c3 is another constant determined by the boundary
condition. For � > 0, by plugging Eq. (7) into Eq. (6b)
we have
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FIG. 1 (color online). (a) Model illustration. Each step, a new
node enters the system and establishes a link in each layer.
To choose the node to connect in the layer �, the new node
refers to the network connectivity not only in that layer � but
also in the other layer � (and similarly in the layer �). Relative
dependency to the other layer is controlled by the coevolution
factor �. (b) Numerical simulation results for the joint degree
distribution Pðk�; k�Þ of coevolving networks of size N ¼ 103

with simple preferential attachment for various �. As the
coevolution factor � increases, degrees of a node in the two
layers become more strongly correlated, intensifying correlated
multiplexity. The color bar denotes the scale in lnPðk�; k�Þ.
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hkli ¼ 2 lnðtÞ � c1

�
Ei

�
� 1

4t

�
� 1

�
exp

�
� 1

4t

��
þ c2: (8b)

Combining Eqs. (7) and (8), one can obtain from Eq. (2)
the correlation coefficient � between degrees of a node
in the two layers. In the long time (equivalently, large
network) limit, the asymptotic value of � is obtained as

� !
�
1=2 ð� ¼ 0Þ;
1 ð0< � � 1Þ: (9)

Nonzero correlation even for � ¼ 0 can be attributed to
the age effect [11] inherent in the growing network, as
older nodes have more chance to receive links than newer
ones. In that sense, the network evolution can still be
considered coupled even for � ¼ 0 as long as the ordering
of arrivals of nodes in different layers are correlated as in
the present model. A layer’s growth becomes completely
decoupled and the correlation vanishes (� ¼ 0) only when
the arrival times of the same node in different layers are
made independent. With coevolution (� > 0), the asymp-
totic correlation � jumps to unity with logarithmically
slow convergence, as confirmed by numerical simulations
(Fig. 2).

When a > 0 (the shifted linear kernel), a similar proce-

dure leads to PðkÞ � k�ð3þaÞ for both layers. Yet again, the
coevolution factor can affect the correlation. As � > 3, hk2i
and hkli remain finite as the network grows and converge
rapidly to the limiting value. It is thus sufficient to focus on
the limiting values. Similar, but slightly more involved
calculations lead to

� ! 6�þ a

6�þ 2a
; (10)

in excellent agreement with numerical simulations
[Fig. 2(c)]. � increases with �. It decreases with a (or
equivalently, �), yet remains � > 1=2 as long as � is finite
[Fig. 2(a)]. Similar results are observed for �1< a< 0,
corresponding to 2< �< 3, found in many real-world
examples [Fig. 2(c)]. These results clearly highlight the
role of the coevolution factor in shaping correlated
multiplexity.

Unidirectional dependency and dissimilar kernel.—
Layers may influence each other asymmetrically and non-
reciprocally. Furthermore, each layer may have different
native growth dynamics. The former can be dictated by
distinct � parameters for the two layers, and the latter by
different a parameters, improving the limitation of monop-
arametric coupling in Eq. (3) towards more realistic mod-
eling. To illustrate the effects of such factors we consider
the growth kernel of the following form:

�� / ðk� þ aÞ; (11a)

�� / ½�k� þ ð1� �Þk��: (11b)

That is, the layer� grows autonomously with shift factor a,
but the layer � evolves with coevolution factor �,

representing cases with unidirectional dependency with
dissimilar growth kernel.
In this case even the degree equation becomes quite

involved for layer �, but the limiting behavior can be
obtained that

P�ðkÞ �
�
k�ð3��Þ=ð1��Þ ð� ! 0Þ;
k�ð3þaÞ ð� ! 1Þ; (12)

with the two regimes separated by � ’ a=ð2þ aÞ. For the
independently evolving layer �, P�ðkÞ � k�ð3þaÞ. This
result shows that the degree distribution of the dependent
layer � becomes modulated by the degree distribution of
the layer � it depends on, if the coevolution factor is strong
enough. This intriguing analytical prediction is supported
by numerical simulations (Fig. 3). The asymptotic value of
� for the coevolving case (� > 0) is obtained as

� !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ a

2þ aþ a=�

s
; (13)
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FIG. 2 (color online). Coevolution induces strong correlated
multiplexity. (a) Degree correlation between two layers � as a
function of coevolution factor � and shift factor a. (b) Plots of
lnðtÞ½1� �ðtÞ� as function of t with a ¼ 0 for different �.
Horizontal behavior of the simulation results (points) supports
the analytically-predicted logarithmic convergence of � towards
the asymptotic value 1. The height of horizontal lines gives the
coefficient of logarithmic correction term. (c) Plots of � as a
function of � for various �, obtained from numerical simulations
(points) as well as theoretical results Eq. (10) (solid lines).
Numerical simulations are performed with network size
N ¼ 106, averaged over 103 runs.
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with the correlation � increasing with the coevolution
factor �. When � ! 0, � vanishes asymptotically for any
a > 0, which may suggest the asymmetric coupling as a
possible factor driving low correlation between indepen-
dently evolving layers.

Impact on cascade dynamics.—Finally, we study the
effect of the coevolved multiplex structure on dynamical
processes occurring on it. As a specific example, we con-
sider the social cascade model which was introduced by
Watts [22] and recently generalized for multiplex social
networks [7], as the multiplex social network is one of the
most actively studied multiplex systems [1,4,7,10]. In this
model, each node (individual) can be in either the active or
inactive state. In the original single network version [22],
an inactive node switches to the active state if the fraction
of active neighbors exceeds the prescribed threshold R.
The final fraction 
 of the active nodes in the network,
starting from a small fraction 
0 of initial active seed
nodes, measures how susceptible a network is to the cas-
cade process. In the multiplex version [7], a node gets
activated if the fraction of active neighbors exceeds the
threshold in any layer, facilitating global cascades to the
extent that layers unsusceptible to global cascades in sim-
plex can cooperatively achieve them when multiplex-
coupled. Here we take a fraction 
0 of the highest degree
nodes as initial active seeds, and measure what fraction 

of nodes are activated at the end of the multiplex cascade
process.

To highlight the effect of the coevolution factor, we first
compare the cascade processes on two network structures
with � ¼ 0 and � ¼ 1, respectively. Results for networks
with layers growing with linear kernels, Eq. (4), are shown
in Fig. 4. For a wide range of threshold R, the networks
with � ¼ 1 support significantly smaller cascades than

those with � ¼ 0. For given R, the cascade size monotoni-
cally decreases with the coevolution factor � (Fig. 4, inset),
showing that the coevolved structure with strong correlated
multiplexity can be significantly less susceptible to cas-
cades. Note that the superposed network structures in
Fig. 4 are independent of �; thus, the coevolution factor
modulates only the internal rearrangement of the layer
structure. The fact that structural modulation within such
a limited range could lead to an observable macroscopic
difference in dynamics elucidates the nontrivial role of
coevolution.
Summary.—To summarize, we have proposed a multi-

plex network modeling framework based on coevolution of
network layers. We have shown both analytically and
numerically that coevolution can profoundly alter the
structural properties of the evolved network, both in the
degree distribution within the layer and in the degree
correlation across the layers. Coevolved multiplex
structures spontaneously develop strong correlated multi-
plexity. Such a structural modulation of the coevolved
multiplex is further shown to entail a dynamical signature,
exemplified by the suppressed susceptibility to a cascade
process.
As coevolution of network layers takes place ubiqui-

tously from social [1] and infrastructural [6] to economic
and ecological systems [23], the proposed coevolution-
based modeling framework could serve as a starting point
for further investigation in diverse fields with richer
system-specific contexts and details, a rationale shared by
a recent independent work by Nicosia et al. [24] whose
results partly overlap with ours. Several more realistic
features such as the difference in the number of nodes or
delayed arrivals of a node [24] in different layers would
also affect the correlation property of the multiplex struc-
ture. Another factor of interest is the effect of negative
coupling between layers. These details can be readily
incorporated into model variants based on the proposed
framework, which we plan to explore in a follow-up study.
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[10] S. Gómez, A. Dı́az-Guilera, J. Gómez-Gardeñes,
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