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We propose a modeling framework for growing multiplexes where a node can belong to different

networks. We define new measures for multiplexes and we identify a number of relevant ingredients for

modeling their evolution such as the coupling between the different layers and the distribution of node

arrival times. The topology of the multiplex changes significantly in the different cases under considera-

tion, with effects of the arrival time of nodes on the degree distribution, average shortest path length, and

interdependence.
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Many different physical, biological, and social systems
are structured as networks, and their properties are now,
after a decade of effort, well understood [1–4]. However, a
complex network is rarely isolated, and some of its nodes
could be part of many graphs at the same time. Examples
include multimodal transportation networks [5,6], climatic
systems [7], economic markets [8], energy-supply net-
works [9], and the human brain [10]. In these cases, each
network is part of a larger system in which a set of
interdependent networks with different structure and func-
tion coexist, interact, and coevolve. So far network scien-
tists have investigated these systems by looking at one type
of relationship at a time, e.g., by analyzing collaboration
networks and email communications as separate graphs.
However, the structural properties of each of these net-
works and their evolution can depend in a nontrivial way
on that of other graphs to which they are interconnected.
Consequently, these systems are better represented as mul-
tiplexes, i.e., graphs composed by M different layers in
which the same set of N nodes can be connected to each
other by means of links belonging toM different classes or
types. Despite some early attempts in the field of social
network analysis [11], the characterization of multiplexes
is still in its infancy, mainly due to the lack of multiplex
data. However, some recent works have already proposed
suitable extensions to multilayer graphs of classic network
metrics and models [12–14]. Preliminary results show that
multiplexicity has important consequences for the dynam-
ics of processes occurring in real systems, including rout-
ing [12,15], diffusion [16], cooperation [17], election
models [18], and epidemic spreading [19]. Nowadays, an
increasing number of new data sets of multiplex systems,
e.g., coming from large online social networks [20,21],
trading networks [22] and human neuroimaging techniques
[23], are rapidly becoming available and demand for ade-
quate models to understand their structure and evolution.

In this Letter we propose and study a generic model of
multiplex growth, inspired by classical models based on

preferential attachment, in which the probability for a
newly arrived node to establish connections to existing
nodes in each of the layers of a multiplex is a function of
the degree of other nodes at all layers. We define two new
metrics to characterize the structure of multiplexes and we
study the effect of different attachment rules and the
impact of delays in the arrival of nodes at different layers
on the structure of the resulting network. We provide
closed forms for both the degree distributions at each layer
and the interlayer degree-degree correlations, and we show
how different attachment kernels can change the distribu-
tions of distances and interdependence.
More precisely, a multiplex is a set ofN nodes which are

connected to each other by means of edges belonging toM
different classes or types. We represent each class of edges
as a separate layer, and we assume that a node i of the
multiplex consists of M replicas, one for each layer. We

denote by V½�� the set of the nodes in layer �, and by E½��
the set of all the edges of a given type �. An M-layer

multiplex is therefore fully specified by the vector A ¼
½A½1�; A½2�; . . . ; A½M��, whose elements are the adjacency

matrices A½�� ¼ fa½��ij g, where a½��ij ¼ 1 if node i and node

j are connected by an edge of type �, whereas a½��ij ¼ 0

otherwise. We denote by k½��i ¼ P
ja

½��
ij the degree of node

i at layer�, i.e., the number of edges of type� of which i is
an endpoint, and by ki the M-dimensional vector of the
degrees of the replicas of i. In general, the degrees of the
replicas of i are distinct, and some replicas can also be

isolated (i.e., k½��i ¼ 0 for some value of �). In the follow-
ing we consider all the edges at all layers to be undirected
and unweighted. As in the case of classical ‘‘singlex’’
graphs, we can characterize each layer � of a multiplex

by studying the degree distribution Pðk½��Þ, and the joint-

degree distribution Pðk½��; k0½��Þ. However, we are inter-
ested here in the structural properties of the multiplex as a
whole, so we propose to quantify the correlations between
the degrees of replicas of the same node at two different
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layers � and �0, by constructing the interlayer joint-degree
distributions Pðk½��; k½�0�Þ, or the conditional degree distri-
butions Pðk½�0�jk½��Þ. In particular, we can look at the
projection of the conditional distribution obtained by con-

sidering the average degree �k½�0� at layer�0 of nodes having
degree k½�� at layer �:

�k½�0�ðk½��Þ ¼ X
k½�0 �

k½�0�Pðk½�0�jk½��Þ: (1)

By plotting this quantity as a function of k½�� we can detect
the presence and the sign of degree correlations between
the two layers. For a multiplex with no correlations

between layers � and �0 we expect �k½�0�ðk½��Þ ¼ hk½�0�i
and �k½��ðk½�0�Þ ¼ hk½��i. If �k½�0�ðk½��Þ increases with k½��
we say that the degrees of the two layers have positive

(assortative) correlations, while if �k½�0�ðk½��Þ is a decreasing
function of k½�� we say that the degrees on layer � and �0
are anticorrelated (or disassortatively correlated). We
notice that a similar concept of internetwork assortativity
was already defined in Ref. [24] for the case of interde-
pendent graphs, while the authors of Ref. [13] proposed to
measure interlayer assortativity by means of the Pearson’s
linear correlation coefficient of degrees [25].

In addition to the assortativity, we can also characterize
the ‘‘multiplex reachability’’ of a node i, e.g., by comput-
ing the average distance Li from i to any other node of the
multiplex, and comparing this average distance with that
measured on each layer separately. The presence of more
than one layer in a multiplex produces an increase in the
number of available paths, so that the distance between two
nodes of a multiplex will be, in general, smaller than, or at
most equal to, that measured on each layer separately.
A better measure to quantify the value added by the multi-
plexicity to the reachability of nodes is the interdepend-
ence [12], which for a node i is defined by

�i ¼
X
j2N
j�i

c ij

�ij

; (2)

where c ij is the number of shortest paths between node i

and node j which use edges lying on more than one layer,
while �ij is the total number of shortest paths between i

and j in the multiplex. The interdependence of a multiplex
is computed as the average node interdependence � ¼
1=N

P
i�i with � 2 ½0; 1�. If � is close to zero, then most

of the shortest paths among nodes lie on just one layer,
while if � is close to 1 the majority of the shortest paths
exploit more than one layer.

The few models of multiplexes proposed so far are based
on the juxtaposition of random graphs [13]. However, net-
works usually result from a growing process consisting of
the addition of nodes and edges over time. For this reason,
we introduce here a model of growing multiplex networks.
Most of the classical growing models for single-layer net-
works start from an initial connected graph with m0 nodes

and assume that new nodes arrive in the graph one by one,
carrying m edge stubs, and connect with other existing
nodes according to a prescribed attachment rule. In that
case, each node i has a unique arrival time ti, but in
multiplexes, instead, each layer can exhibit a different
edge-formation dynamics, and in general the edges of the
M replicas of a new node are not created at the same time.
For instance, a face-to-face interaction relationship is usu-
ally established before two individuals become friends,
while two locations are usually connected by a road before
a direct railway line between them is constructed.
Consequently, we assume that a newly arrived node has
exactly m stubs on each layer of the multiplex (in [27] we
briefly discuss the case where m is a random variable), but
the replica of a node i on layer � can connect itsm stubs at

a different time t½��i . We denote by ti the vector of arrival
times of the replicas of node i. In order to make the model
analytically tractable, we make two simplifying assump-

tions. The first is that there exists a layer �� so that t½ ���i �
t½��i 8i, 8� � ��. This is equivalent to saying that a newly
arrived node must first create its connections on layer ��
before any of its replicas can create connections on any
other layer � � ��. We call �� the master layer (in Ref. [27]
we briefly discuss the case in which this assumption does
not hold, and each node can arrive first on any of the M
layers of the multiplex). The second assumption is that
nodes arrive one by one on the master layer, at equal
discrete time intervals t ¼ f1; 2; . . .g. We label the nodes
of a growing multiplex according to the ordering induced
by their arrival on the master layer. Without loss of general-
ity, in the following we assume that the master layer is the
first one, i.e., �� ¼ 1, and that the arrival times of the
replicas of node i have the form

t½��i ¼ T½t½1�i ; �½��ð�Þ�; (3)

where T is a certain function of t½1�i and of the random

variable �½��ð�Þ. By appropriately choosing T and �½��ð�Þ
we can model different arrival behaviors, including (i)

simultaneous arrival (T ¼ t½1�i ), and (ii) power-law delayed

arrival [T ¼ t½1�i þ �ð�Þ and Pð� ¼ �Þ ¼ ð�� 1Þ��� for
� � 1 and �> 1]. Upon arrival, the newborn node i con-
nects tom existing nodes in the master layer, according to a
certain attachment rule. As in the preferential attachment
models [28], we assume that the attachment probability
depends on the degree of a node. However, in a multiplex
the probability for node i to connect to node j on each layer

� can depend not only on k½��j but also on the degrees of j’s

replicas on the other layers

�½��
i!j ¼

F½��
j ðkjÞP

l F
½��
l ðklÞ

: (4)

For the sake of clarity and without loss of generality,
we focus in the following on 2-layer multiplexes with
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� ¼ 1, 2. We begin with the simplest case of linear attach-
ment which is the natural extension of the Barabási-Albert
model [28]. In this case, we consider that the probability
for a newborn node i to connect to an existing node j on
layer � is proportional to a linear combination of the
degrees of j at all layers. The attachment kernels can
then be expressed as

F½1�½k; q�
F½2�½k; q�

" #
¼ C

k

q

" #
¼ c½1;1� c½1;2�

c½2;1� c½2;2�

" #
k

q

" #
; (5)

where we use here and in the following the notations k½1� ¼
k and k½2� ¼ q [29]. The coefficients c½r;s� tune the depen-
dence of the attachment probability at layer r on the
degrees of nodes at layer s. In the case of 2-layer multi-

plexes we can represent the set of coefficients C ¼ fc½r;s�g
using the compact notation fc½1;1�; c½1;2�; c½2;1�; c½2;2�g. The
dynamics can be easily solved in the mean-field (see [27]
for details) and in some specific cases we can fully char-
acterize the degree correlations within the two different
layers by analytically solving the master equation. If we
denote by Nk;qðtÞ the number of nodes having, at time t,

degree k on the first layer and degree q on the second layer,

and by �½��
k;q the probability that one of these Nk;qðtÞ nodes

acquires one of the m new links on layer � at time tþ 1,
the master equation can be written as [30]

Nk;qðtþ 1Þ ¼ Nk;qðtÞ þG �L; (6)

where

G ¼ m½�½1�
k�1;qNk�1;qðtÞ þ�½2�

k;q�1Nk;q�1ðtÞ� þ �k;m�q;m;

L ¼ m½�½1�
k;q þ�½2�

k;q�Nk;qðtÞ;

represent, respectively, the expected increase (G) and the
expected decrease (L) of Nk;q at time (tþ 1). Assuming

that Nk;q ¼ tPðk; qÞ for large t, the solution of Eq. (6) is

obtained by solving the corresponding recursive expres-
sion (see [27] for details). In the following we summarize
the master-equation solution in some particularly interest-
ing cases. First of all, let us consider simultaneous arrival
of the nodes in the two layers. If we setC ¼ f1; 0; 0; 1g then
the attachment probability at each layer will depend only
on the degree of the nodes in the same layer. In this case the
degree distribution in the first layer reads [31,32]

PðkÞ ¼ 2mðmþ 1Þ
kðkþ 1Þðkþ 2Þ ; k > m; (7)

and the degree distribution in the second layer is identically
equal. This distribution goes as PðkÞ � k�� with � ¼ 3. If
we solve the master equation for the multiplex evolution
we obtain the analytical expression for the interlayer joint
degree probability Pðk; qÞ

Pðk;qÞ¼ 2�ð2þ2mÞ�ðkÞ�ðqÞ�ðkþq�2mþ1Þ
�ðmÞ�ðmÞ�ðkþqþ3Þ�ðk�mþ1Þ�ðq�mþ1Þ :

(8)

The average degree �kðqÞ at layer 1 of nodes having degree
q at layer 2 reads

�kðqÞ ¼ mðqþ 2Þ
1þm

: (9)

Notice that even if the two layers grow independently, the
simultaneous arrival introduces nontrivial interlayer degree
correlations. In fact, in the mean-field approach, the degree

of a node on each layer increases over time as k½��i ðtÞ ¼
mðt=t½��i Þ1=2 (see [27] for details), so that the degrees of the
two replicas of a node i depend, for large t, only on their
arrival time. If both replicas have the same arrival time,

i.e., t½1�i ¼ t½2�i then the degree of the two replicas will be
positively correlated. In Fig. 1 we report the degree distri-
bution and the values of �kðqÞ for two coupling patterns,
which are in good agreement with the theoretical curves
[33]. It is clear from the figure that in the synchronous
arrival case the shape of the coupling matrix is actually not
very relevant and that the value of the degree distribution
exponent and strong assortativity are robust features of
these multiplexes.
If we consider a power-law delayed arrival time on the

second layer, the results are significantly different. In Fig. 2
we illustrate how the exponent of the delay distribution �
affects the structure of the obtained multiplex. The bulk of
the degree distributions are still power laws PðkÞ � k��

with � ¼ 3, but the shape of the far tail depends now on �:
for small �, a few nodes are predominant and become
super-hubs (as also shown in Fig. S-1 in [27]). The average
shortest path and the interdependence are also significantly
affected, as shown in Figs. 2(c) and 2(d). In particular,
when � is closer to one the presence of more predominant
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FIG. 1 (color online). (a),(b): the degree distribution PðkÞ (left)
and the projection �kðkÞ of the interlayer degree correlations
(right) closely follow the theoretical curves (solid black lines)
and are relatively insensitive to the coupling matrix.
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‘‘old’’ hubs lowers the average shortest path and the inter-
layer assortativity. Moreover, broader delays cause a lower
participation of hubs of the second layer in shortest paths,
as shown in Fig. 2(e).

So far we have considered the case of two scale-free
growing networks, but it would be interesting to construct
multiplexes in which a scale-free network is coupled to a
network with a peaked degree distribution. In this respect,
we introduce a semilinear attachment kernel which allows
to grow multiplexes in which the two layers have different
topological structures. The model is defined as follows:

F½1�½k; q�
F½2�½k; q�

" #
¼ C

k

1

" #
; (10)

where C is still a 2� 2 matrix of coefficients, as in the
linear model. In this case, the degree of a node on any of
the two layers could depend only on its degree on layer 1
and does not ever depend on its degree on layer 2. If we set
C ¼ f1; 0; 0; 1g we can analytically solve the master equa-
tion and the degree distributions of the two layers read

P½1�ðkÞ � k�3; P½2�ðqÞ � e�q; (11)

while the interlayer joint degree distribution is equal to

Pðk; qÞ ¼ aðkÞ Xk�m

n¼0

k�m

n

 !�
2m

2þ 2mþ k� n

�
q�mþ1

� ð�1Þk�mþn; (12)

where aðkÞ ¼ �ðkÞ=½�ðmþ 1Þ�ðk�mþ 1Þ�. The function
�kðqÞ is given by

�kðqÞ ¼ m

�
2ðmþ 1Þ
1þ 2m

�
q�mþ1

: (13)

Similar relations can be derived for the other coupling
patterns. In panel (a) and (b) of Fig. 3 we report the degree
distribution and the value of �kðqÞ for three different coupling
patterns, which are in good agreement with the theoretical
curves. In the semilinear model the coupling pattern has a
dramatic impact on other structural properties of the multi-
plex such as the distribution of the average shortest path
length from each node and the distribution of node interde-
pendence. In particular, the interdependence is smaller for
older nodes, and grows sublinearly with time. This implies
that navigation for old nodes is easier within a single layer
while younger nodes will have to resort to the different layers
to reach a target. In addition, a sublinear growth implies that
the system performance increases very slowly.
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