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Statistics of the dwell times, the stationary state distributions (SSDs), are often studied to infer the

underlying kinetics from a single molecule finite-level time series. However, it is well known that the

underlying kinetic scheme, a hidden Markov model (HMM), cannot be identified uniquely from the SSDs

because some features of the underlying HMM are hidden by finite-level measurements. Here, we

quantify the amount of excessive information in a given HMM that is not warranted by the measured SSDs

and extract the HMM with minimum excessive information as the most objective representation of the

data. The method is applied to a single molecule enzymatic turnover experiment, and the origin of

dynamic disorder is discussed in terms of the network properties of the HMM.

DOI: 10.1103/PhysRevLett.111.058301 PACS numbers: 82.37.�j, 02.50.Ga, 02.50.Tt, 05.45.Tp

A discrete finite-level time series is often observed in
single molecule experiments to extract the dynamical and
kinetic information on the working mechanisms of a single
(or multiple) biomolecule(s) [1–7]. The underlying dynam-
ics and kinetics from the data are usually represented by a
finite-state hidden Markov model (HMM) whose state and
transition properties are inferred from the dwell-time sta-
tistics of the levels. A common feature of these measure-
ments is that the system can visit several different states
(e.g., on the energy landscape [8–11]) while the observed
time series stays on the same level. This means that some
states are aggregated and some transitions are masked by
the measurement. It is well known [12,13] that there can
exist more than one HMM to reproduce all the observed
stationary state distributions (SSDs) of the dwell times;
i.e., the underlying HMM is, in general, unidentifiable
from the dwell-time time series.

Let us consider a two-level time series with two symbols
(a and b). The full statistical information of the time series
is specified by the set of SSDs, which has the general form
of f�1�2���ðt�1

; t�2
; . . .Þ (with �1; �2; . . . ¼ a; b and �i �

�iþ1) denoting the probability of the system visiting suc-
cessively the symbol �1 for t�1

steps, the symbol �2 for t�2

steps, and so on. It has been shown [12] that the full set of
SSDs does not contain enough information to uniquely
determine the underlying HMM. HMMs which may have
different state and transition properties are said to be
equivalent if they reproduce the same SSDs. The transition
matrices of the equivalent HMMs with the same number of
states (Na and Nb) for the two levels (a and b) are related
by similarity (Kienker) transformations [12,13] whose
matrix elements take continuous values. Therefore, there
are, in general, infinitely many equivalent HMMs for a
given set of measured SSDs.

There have been a few attempts to resolve the problem
of unidentifiability by imposing additional constraints on

the HMM, e.g., the maximum likelihood estimation of an
aggregated Markov model with a presumed network topol-
ogy [14,15], the uncoupled model [12,16] in which tran-
sitions between states with the same symbol are forbidden,
and the manifest interconductance rank form [17] in which
the transition matrices among states with different symbols
are diagonalized. However, the additional constraints
imposed may result in some properties in the inferred
HMMs which cannot be warranted by the data. Here, we
take a different approach from the information-theoretic
viewpoint by formulating a measure, termed ‘‘excessive
information,’’ to quantify the amount of extra information
in a given HMM that cannot be warranted by the observa-
tion. By minimizing the number of states and the excessive
information with respect to all equivalent HMMs to repro-
duce the same measured SSDs, we identify the HMM that
contains the least amount of a priori assumptions as the
simplest and the most objective representation of the data.
Without loss of generality, we formulate the measure of

excessive information for two-symbol (a and b) time se-
ries. Suppose one obtains from a measurement the set of
joint dwell-time SSDs [fabðta; tbÞ and fbaðtb; taÞ] which
sufficiently represent all statistical information to construct
HMMs [18]; i.e., no additional information is contained in
the higher order SSDs and correlations. Let ~� ¼
f ~�L

1 ; ~�
L
2 ; . . .g be the set of all symbolic sequences ~�L

i with

length L which are different realizations of the SSDs, e.g.,
~�L
i ¼ ð� � � baabbba � � �Þ with length L. Now let us con-

sider a particular HMM from the set of all equivalent
HMMs reproducing the same SSDs as those from the
measurement and having the same number of states
Na and Nb. We label its states as (a1; . . . ; aNa

) and

(b1; . . . ; bNb
), and denote ~S¼f ~SL1 ; ~SL2 ; . . .g as the set of all

possible state sequences with length L that can be gener-

ated by this HMM, e.g., ~SLi ¼ ð� � � b1a1a1b2b1b1a2 � � �Þ
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corresponding to ~�L
i . Note here that any state sequence

realization ~SL corresponds to only one symbolic sequence
~�L. Conversely, given a symbolic sequence, there can exist
more than one corresponding state sequence since any
given symbol can associate with more than one aggregated
state. For simplicity, we omit the superscript L and indices

i in ~�L
i and ~SLi hereinafter.

An information-theoretic measure, which quantifies the

average uncertainty in identifying the state sequence ~S
when the symbolic sequence ~� is known, is given by the
conditional entropy [19]

Hð ~Sj ~�Þ ¼ Hð ~SÞ �Hð ~�Þ
¼ X

~�

Pð ~�Þ
�
�X

~S

Pð ~Sj ~�Þlog2Pð ~Sj ~�Þ
�
� 0; (1)

where Pð ~�Þ, Pð ~SÞ, and Pð ~Sj ~�Þ are the probabilities

and conditional probability for ~� and ~S. Hð ~SÞ¼
�P

~SPð ~SÞlog2Pð ~SÞ�0 and Hð ~�Þ¼�P
~�Pð ~�Þlog2Pð ~�Þ�

0 are Shannon entropies which measure the amount of

uncertainty in identifying a particular ~S for the given
HMM and a particular ~� for the measured SSDs,
respectively.

The conditional entropy Hð ~Sj ~�Þ vanishes if and only if
solely one specific state sequence is permitted by the given
HMM for each element ~� in the set ~� while all other
corresponding state sequences are forbidden, i.e.,

Pð ~Sj ~�Þ ¼ 0 or 1. This is the maximally biased case in
which the HMM considered imposes extra information to
completely favor one unique state sequence over all the

others. Contrarily, the value of Hð ~Sj ~�Þ increases when

Pð ~Sj ~�Þ becomes more uniform with respect to ~S for any
given ~�. This corresponds to the more unbiased case in
which the HMM considered imposes less extra information
to favor specific state sequences over the others. Therefore,
we interpret the negative of the conditional entropy

IEð ~Sj ~�Þ � �Hð ~Sj ~�Þ as the amount of excessive informa-
tion contained in a given HMM. One can also see this

explicitly from Eq. (1) that IEð ~Sj ~�Þ ¼ ½�Hð ~SÞ� �
½�Hð ~�Þ�, stating that IEð ~Sj ~�Þ is equal to the difference

between the amount of information contained in ~S and that

of ~�. Thus, minimizing IEð ~Sj ~�Þ [or maximizing Hð ~Sj ~�Þ]
with respect to different equivalent HMMs (i.e., those
reproducing the measured SSDs with the same Na and
Nb) corresponds to minimizing the extra information con-
tained in the HMM that is not present in the measured
SSDs.

Once the symbolic sequences are obtained from experi-
ment, Pð ~�Þ is fixed and Hð ~�Þ does not depend on which
equivalent HMM is chosen. Thus, Eq. (1) tells us that

maximizing Hð ~Sj ~�Þ with respect to different equivalent
HMMs is the same as maximizing the Caliber (or path

entropy) [20–23] Hð ~SÞ of the state sequences. Since
equivalent HMMs have the same SSDs, this corresponds
to maximizing the Caliber [24,25] with the SSDs fabðta; tbÞ
and fbaðtb; taÞ as constraints. In practice, it is more expe-

dient to maximize Hð ~SÞ instead of Hð ~Sj ~�Þ since the max-

imization of Hð ~SÞ does not need to refer to the symbolic
sequences ~� once the set of equivalent HMMs is declared.
Further simplification can be performed by decompos-

ing Hð ~SÞ using the Markovian property of the HMMs into

Hð ~SÞ ¼ HðSÞ þ ðL� 1ÞHðS0jSÞ; (2)

where HðSÞ ¼ �PNaþNb

i¼1 PðSiÞlog2PðSiÞ is the Shannon

entropy of the states, and

HðS0jSÞ¼ XNaþNb

j¼1

PðSjÞ
�
� XNaþNb

i¼1

PðS0ijSjÞlog2PðS0ijSjÞ
�

(3)

is the conditional entropy of the state-to-state transitions in
the HMM [26] with PðS0ijSjÞ denoting the transition proba-
bility from Sj to S0i. We consider the minimization of the

excessive information for arbitrarily long (L large) state
sequences, and one can see that the first term on the right-
hand side of Eq. (2) becomes negligible. Therefore, max-

imizing Hð ~SÞ is the same as maximizing HðS0jSÞ.
Moreover, it has been shown recently [27] that HðS0jSÞ is
a natural information-theoretic measure for the complexity
of a topographical feature, namely, the diversity in the
state-to-state transitions, of Markovian networks. In the
context of dynamical systems theory, one also notices
that HðS0jSÞ is the Kolmogorov-Sinai entropy [28] of the
HMM, which characterizes the dynamical randomness of a
Markov process [29]. Therefore, the HMM with the mini-
mum excessive information reproducing all the measured
SSDs represents the model that generates the most ‘‘sto-
chastic’’ state sequence with a minimal complexity of
pattern (or syntax).
Figure 1 shows an example to outline our procedures in

identifying the most unbiased HMM from the measured
SSDs, and the details are given in the Supplemental
Material [30]. Let us consider a two-symbol time series
generated by an underlying true HMM with two aggre-
gated states for each symbol [Fig. 1(a)]. Suppose that we
have the SSDs [fabðta; tbÞ and fbaðtb; taÞ] constructed from
the dwell-time time series. Because of its simplicity, we
first extract the uncoupled model with minimum required
number of states to reproduce the measured SSDs, which
will serve as an initial HMM for the maximization of
HðS0jSÞ [Eq. (3)] to obtain the most unbiased HMM. It
can be easily shown that the minimum number of aggre-
gated states is equal to the minimum number of exponen-
tials needed to describe the dwell-time distributions
[faðtaÞ and fbðtbÞ] [31]. In this work, we employed a
multiexponential curving-fitting method, the so-called
Padé-Laplace method [32], which does not require any
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a priori assumption on the number of components, to
determine the minimum number of exponentials in faðtaÞ
and fbðtbÞ. After determining the number of exponentials,
the actual fitting of the exponent values is performed by
least-square methods.

Next we extract the transition matrix elements of the
uncoupled model by using the singular value decomposi-
tion of fabðta; tbÞ and fbaðtb; taÞ (see the Supplemental
Material [30]). Figure 1(c) shows the uncoupled model
extracted from the SSDs. Finally, we obtain the equivalent
HMM [which relates to the uncoupled model by a similar-
ity (Kienker) transformation] that maximizes HðS0jSÞ by
using the Newton-Raphson method [33]. This equals to
maximizing HðS0jSÞ constrained by the SSDs fabðta; tbÞ
and fbaðtb; taÞ.

Figure 1(d) shows the resulting unbiased HMM con-
strained only by the SSDs which resembles the underlying
HMM. The small discrepancy demonstrates that in general
the underlying HMM cannot be fully identified from the
measured SSDs. We also note from Figs. 1(c) and 1(d)
that both the state and the transition probabilities of the
uncoupled model are more uneven compared to the
unbiased HMM. This is because the uncoupled model is
constrained not only by the SSDs but also by the extra
condition that no transition is allowed among states with
the same symbol. Contrarily, no such extra condition exists

for the unbiased HMM, and thus its state and transition
probabilities can be assigned as evenly as possible.
We apply our method to the single molecule enzy-

matic turnover experiment [2] on Escherichia coli
�-galactosidase with a fluorogenic substrate,
resorufin-�-D-galactopyranoside. The real time observa-
tion of a single enzyme during successive catalytic reac-
tions has revealed the multiscale fluctuation in the turnover
rate, which has been interpreted [2] as originating from
transitions among a variety of conformations with different
catalytic activities. Figures 2(a)–2(d) show schematically
the profile of the catalytic cycle and the corresponding
intensity trace probed by the experiment. The distributions
of the enzymatic turnover time for different substrate con-
centrations ½S� are shown in Fig. 2(e). It is evident from the
Padé-Laplace method that kinetics for ½S� (� 50�M)
much smaller than the Michaelis constant KM ’ 380 �M
can be well described by a single exponential, implying
that the diffusion process [from Fig. 2(a) to Fig. 2(b)] is the
rate-limiting step in the catalytic cycle. The distribution
becomes multiexponential at ½S� ¼ 100 �M. It has been
argued [2] that increasing ½S� makes the rate-limiting step
shift from the diffusion process to the catalytic reaction
[from Fig. 2(b) to Fig. 2(c)] in which slow transitions
between conformations of the enzyme-substrate system
give rise to the fluctuation of the enzymatic rates, a phe-
nomenon that has been termed as ‘‘dynamic disorder’’
[2,3,34]. In addition to the multiexponential distribution,
dynamic disorder is also characterized by the existence of
long memory in the turnover kinetics. Figure 2(f) shows
the turnover-time autocorrelation CðkÞ ¼ P

i½ðti � �tÞ�
ðtiþk � �tÞ�=�t2 with k the event lag and �t the time average
of the turnover time, at ½S� ¼ 50 and 100 �M. A
correlation is absent for ½S� � 50 �M when the diffusion
process is the rate-limiting step. However, memory
lasting for about six turnovers (� 50 ms) appears at
½S� ¼ 100 �M that can be attributed to the enzyme con-
formational fluctuation with a long correlation (� 10�3 �
1 s), as reported previously at the single molecule level
[9,35].
The HMMs with the minimum excessive information

which reproduces all measured SSDs are drawn in Fig. 2(b)
for ½S� ¼ 50 and 100 �M [36]. A single state is sufficient
to represent the catalytic cycle dominated completely by
the diffusion process for ½S� � 50 �M. However, at least
three states (S1, S2, and S3) are required to explain the
turnover-time distribution in Fig. 2(e). The average resi-
dential times for S1, S2, and S3 are about 12, 3.4, and
1.4 ms, respectively. By comparing these time scales
with that of the state at 50 �M, found to be �14 ms, we
interpret that the state S1 is still dominated by the diffusion
process, whereas S2 and S3 with shorter time scales start to
capture contributions from the catalytic steps. To single out
the characteristic features of different catalytic states free
from the effect of diffusion, one can consider other
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FIG. 1 (color online). An example of how to obtain the most
unbiased HMM from a time series. (a) A two-symbol time series
generated by the underlying true HMM. (b) The dwell-time
distributions faðtaÞ (red dots) and fbðtbÞ (blue dots) and the
multiexponential fitting determined by the Padé-Laplace method
(solid lines). (c) The uncoupled model served as an initial guess
for the maximization of HðS0jSÞ in Eq. (3) with respect to the
equivalent HMMs. (d) The unbiased HMM containing only the
information from the SSDs. Note that all HMMs in this figure
produce the same SSDs, but different HMMs contain different
amounts of additional information. In the HMM, the state and
transition probabilities are represented by the circle area and the
arrow thickness, respectively. For clarity, self-transitions of the
states are not drawn.

PRL 111, 058301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

2 AUGUST 2013

058301-3



experiments with ½S� 	 KM in which the catalytic reaction
becomes rate limiting.
The predictions of the autocorrelations from the con-

structed most unbiased HMMs [Fig. 2(f)] agree well with
the measured ones. Figure 2(g) also shows how the mem-
ory observed at ½S� ¼ 100 �M is characterized by the
network properties of the HMM: the transitions from the
current cycle to the next one are mainly mediated by
transitions among the same states (e.g., from S2 in the
current cycle to S2 in the next one). As the three states
have distinct residential times, this indicates that a short
(long) dwell is more likely to be followed by a short (long)
dwell which gives rise to the correlation in the turnover
times.
In summary, the HMM from the set of equivalent HMMs

that reproduce all observed SSDs with minimum excessive
information is regarded as the most objective Markov
modeling of the data, and any other equivalent HMM
necessarily carries extra constraints unwarranted by the
measurement. It is also shown that the minimization of
excessive information results in maximizing the Caliber of
the state sequences constrained by the measured SSDs
[e.g., fabðta; tbÞ and fbaðtb; taÞ in the case of two-level
time series]. Our method complements but has a similar
spirit to the canonical form of reduced dimensions [37],
which discriminates HMMs by referring to the topological
features of the canonical form, and the non-Markov mem-
ory kernel model [38], which can handle systems with
heavy-tail statistics. The main distinctive feature of our
approach is that it provides a concrete measure of excessive
information which elucidates quantitatively the amount of
information in the HMMs that cannot be warranted by the
original data. This enables us to scrutinize which observ-
able provides more information to construct a HMM
closer to the underlying true HMM. Moreover, the non-
Markovian properties of the reduced dimensions form
and the non-Markov memory kernel model are reflected
in the nonexponential dwell-time distribution and memory
kernel of the states, whereas in our case they are manifest
in the topographical properties of the constructed
HMM whose state-to-state transitions are Markovian. As
a result, a detailed comparison of the most unbiased
HMMs associated with different observables allows us
to scrutinize the origin of various dynamical features
free from any unwarranted information in terms of the
topographical features of the constructed networks
[27,39].
We acknowledge H. Teramoto and H. Ueno for their

valuable comments. We also thank X. S. Xie for provid-
ing the time series of the single molecule enzymatic
turnover experiment. This work was partially supported
by JSPS, JST/CREST, HFSP, a Grant-in-Aid for
Research on Priority Areas ‘‘Innovative nano-science,’’
and ‘‘Spying minority in biological phenomena,’’
MEXT.
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FIG. 2 (color online). The construction of the most unbiased
HMM from the single molecule turnover experiment. A single
enzyme ðEÞ is immobilized on a coverslip and immersed in a
buffer with constant ½S� in order to facilitate a long-time obser-
vation in the confocal detection volume (yellow regions). (a) The
diffusion stage in which a freely moving nonfluorescent substrate
‘‘searches’’ the catalytic sites of the enzyme. This process is
mainly governed by Brownian dynamics with a single time scale.
(b) The enzyme-substrate complex is formed. (c) The bound
substrate is converted into the fluorescent product P
, then dis-
sociates from the enzyme and quickly diffuses out from the
confocal detectionvolume. (d) The intensity trace inwhich photon
bursts (< 0:5 ms) appear only when a P
 is formed, and the
‘‘dark’’ dwell time t gives the catalytic turnover time.
(e) Histograms of the turnover time (dots) in log-linear scale for
different ½S� (from the top: red, 10 �M; green, 20 �M; purple,
50 �M; blue, 100 �M). (f) The dwell-time autocorrelation
calculated from the experimental data [dots with error bars—
purple (bottom), 50 �M; blue (top), 100 �M] indicates the
existence of memory at 100 �M. (g) The most unbiased HMMs
constructed at ½S� ¼ 50 �M (upper scheme) and ½S� ¼ 100 �M
(lower scheme). Network notations are the same as those in Fig. 1.
States at the current cycle and transitions originating from them
are shown by dark color, whereas those from the previous and
next cycles are shown in gray. The solid lines in (e) and (f) denote
the exponential fitting by the Padé-Laplace method and the
prediction from the constructed HMMs in (g), respectively.
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