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Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how
such delay affects bistable systems. We investigate several stochastic models of bistable gene networks
and find that increasing delay dramatically increases the mean residence times near stable states. To
explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that
stabilization is the consequence of an increased number of failed transitions between stable states. Each of
the bistable systems that we simulate behaves in this manner.
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Transcriptional delay [1] in gene networks is the
dynamical consequence of the sequential nature of protein
production [2-5]. For transcriptional signaling this delay is
further compounded by the time it takes for transcription
factors to find their target promoters [6,7]. Previous theo-
retical work has shown that such delay can significantly
affect the dynamics of gene networks and play an impor-
tant role in a variety of naturally occurring genetic network
architectures. For example, delay produces oscillations in
models of networks containing transcriptional negative
feedback loops [4,8—12]. In addition, delayed negative
feedback is theorized to govern the dynamics of circadian
oscillators [3,13], a hypothesis experimentally verified
in mammalian cells [14]. Experiments also suggest that
transcriptional delay can produce robust, tunable oscilla-
tions in synthetic gene circuits [15,16].

In this Letter we study the impact of delay on bistable
gene networks. Bistability is a central characteristic of
biological switches: It is essential in the determination of
cell fate in multicellular organisms [17], the regulation
of cell-cycle oscillations during mitosis [18], and the main-
tenance of epigenetic traits in microbes [19]. Because of
the stochastic nature of gene expression, bistable gene
networks can randomly switch between stable states [20].
This phenomenon has been studied in many contexts,
including the lysis-lysogeny switch of bacteriophage A
[21,22], bacterial persistence [23], and synthetically con-
structed positive feedback loops [24,25].

While delay and bistability have been extensively
studied, the impact of transcriptional delay on bistable gene
networks is not clear. In general, the interaction between
delay and stochasticity is complex. Modeling suggests
delay affects the stochastic properties of gene expression
[26-29], and that stochastic delay can accelerate signaling in
genetic pathways [5]. The effect of delay on the mean first
passage times for Langevin approximations to bistable gene
networks has been studied, but no general principles have
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been proposed. Indeed, many results appear to contradict
each other [30-34]. There are many possible reasons for
these discrepancies. For instance, Langevin approximations
can fail at small system sizes typically found inside cells,
and ad hoc choices of Langevin models can lead to different
predictions for the same underlying system.

Here, we investigate a variety of bistable gene networks
using a modified version of the Gillespie algorithm that
allows us to incorporate transcriptional delay [35].
Although the details and dimensionality of the networks
differ, in each the mean residence times near the stable
states increase dramatically with even modest increases in
transcriptional delay time (see Fig. 1). In some cases,
stability increases despite the fact that the stationary
distributions show no appreciable change. To explain this
phenomenon, we construct a non-Markovian, analytically
tractable model. The model predicts that the enhanced
stability is due to an increase in the number of failed
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FIG. 1. Sample trajectories for a single gene positive feedback

loop. From top to bottom, the three time series correspond to
transcriptional delays 7 =0, t,,, and 2t;,,, where t;/, is the
half-life of the protein.
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transitions between stable states. Exact stochastic simula-
tions of each bistable system verify this prediction.

Models and simulations.—To explore the impact of tran-
scriptional delay on bistable gene networks, we simulated
three common systems: (1) a single-gene positive feedback
loop, (2) the corepressive toggle switch [24], and (3) the
lysis-lysogeny switch of phage A [22]. Details about the
models, parameters, and simulations can be found in
the Supplemental Material [36].

Consider the single-gene positive feedback loop shown
in Fig. 2(a). The corresponding deterministic dynamics are
given by the delay differential equation

x(t — 1)
x=at+pB——-—"—— X, 1
B e+ x(t— 1) H}’H )
b ' d death
birth

where x is the number of proteins per unit volume, « the
basal transcription rate due to leakiness of the promoter, 8
the increase in transcription rate due to protein binding to
the promoter, b the Hill coefficient, ¢ the concentration
of x needed for half-maximal induction, y the degradation
rate coefficient of the protein, and 7 the transcriptional
delay time.

This positive feedback loop is bistable for a range of
parameters. As shown in the SM [36], the stability of the
two fixed points generally decreases with an increase in
delay in Eq. (1).

In the corresponding stochastic model, births and deaths
occur at rates indicated in the equation. We chose parame-
ters for which the system switches stochastically between
the two stable states and examined a biophysically relevant
range of delays. These were on the order of the protein
half-life, but small compared to the transition time scales.

While an increase in delay destabilized the fixed points in
the deterministic model, in the stochastic counterpart it
resulted in a sharp increase in the average residence time
near the stable states [see Figs. 1 and 2(a), panel 3].
Qualitatively similar behavior was observed in other models
of bistable gene networks we examined (see Fig. 2).
Although these systems are quite different, increasing tran-
scriptional delay has qualitatively the same effect in all cases.

Simulations showed that, with an increase in transcrip-
tional delay, (a) the mean residence time near the stable
states increases (right-hand panels of Fig. 2), (b) the proba-
bility of a successful transition decreases, and (c) the
increase in stability may not be accompanied by a consis-
tent change in the stationary distribution (center panels of
Fig. 2). These observations appear to be independent of
the model system and therefore may have an underlying,
unified explanation. However, since the stationary distri-
butions do not necessarily change in the manner predicted
by Kramers’ theory [37], a new explanation of the phe-
nomenon is necessary.

Reduced model (RM).—In order to obtain a unified
description of the observed increase in stability with an
increase in transcriptional delay, we introduce a general-
ized three-state reduced model. Two of the states in the
model correspond to neighborhoods of the two stable fixed
points. We call these states H (high) and L (low). The third
state is an intermediate state, I, corresponding to a neigh-
borhood of the separatrix. All transitions between H and L
must pass through /. Therefore, the RM represents a coarse
projection of a general bistable model where large fluctua-
tions push the system from the stable states into a neigh-
borhood of the separatrix.

Because of transcriptional delay, the transition rates
between the states depend on the history of the system.
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FIG. 2.

Impact of transcriptional delay on three different genetic networks. Left-hand panels show the three different gene networks,

center panels show the stationary distributions at three different values of transcriptional delay 7, and right-hand panels illustrate the
increase in residence times (dots) and the decrease in the probability of a successful transition (dashed lines) with increasing 7. R,
denotes the mean residence time in the metastable states at delay 7. The lighter stationary distributions correspond to larger delays.
(a) Positive feedback model with stationary distributions at 7 = 0, 1, 2, and R, = 227. (b) A-phage model with stationary distributions
at 7=0, 5, 10, and R, = 4829. (c) Corepressive toggle switch with stationary distributions at 7 = 0, 0.45, 0.9, and R, = 489.
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This is particularly important when the system is in state /.
In the absence of delay the system has no memory; the
likelihood of a transition to either stable state from a
neighborhood of the separatrix is determined only by the
present state of the system. However, in the presence of
delay, this likelihood will depend on the past.

As a particular example, consider the positive feed-
back loop [Fig. 2(a)]. At the upper stable state, which
corresponds to state H in the RM, protein production is
high. Consider a large fluctuation from this state that
takes the system away from the upper fixed point, to
state S, shown in Fig. 3(a). In the presence of transcrip-
tional delay, birth rates are determined by the state
S,_, = x(t — 7). The larger 7, the more likely it is that
x(t — 7) is in state H, near the fixed point whose neigh-
borhood has just been abandoned. But the birth rates
in state H are high and favor motion back toward H
[see Fig. 3(a)]. Therefore, the trajectory is pulled back
towards the stable state it came from. Thus, memory in
the system acts as a “‘rubber band” and causes resist-
ance to transitions.
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FIG. 3. Phase space dynamics. The state of the system at time
t — 7 and time ¢ is shown in the case of (a) a positive feedback
loop and (b) a genetic toggle switch. Mature proteins enter the
population at time ¢ at rates determined by the state at time ¢ — 7.
In (a), at time ¢, the birth rate B, of x is larger in the past,
and production is higher than if the birth rate was determined by
the present state of the system, S,. This facilitates a return to the
previously visited stable state. A similar explanation holds for
(b) (see text). Stationary densities are shown in both cases.

The situation is similar for the genetic toggle switch, a
network of two mutually repressing genes expressing pro-
teins x and y. At the stable states of this system [dots in
Fig. 3(b)], the birth rate of one protein is high, and that of
the other is low. Consider a fluctuation away from state H,
where x is high and y low, to state S, = (x(¢), y(¢)). Birth
rates are again determined by the state S, , = (x(¢ — 7),
y(t — 7)). As shown in Fig. 3(b), in state S,_, both the birth
rates of x and y at ¢t — 7 favor motion back to H. Hence,
in systems of interacting genes, the rubber band effect may
be even stronger.

To capture the effects of memory in the RM, the
transition rates between states are assumed to depend on
the state of the system in the past. We define A;_,k, for
i, j, k € {H, I, L}, as the rate of transition from state j to
state k, given that the system, 7 units of time in the past,
was in state i. Not all transitions are possible, as transitions
out of states H and L must go into state /.

We make several assumptions on these transition rates.
First, the delay 7 is small compared to the mean residence
time in each of the stable states. Therefore, if the system is
in state H or L at time ¢, it is unlikely that it was in state /
at time ¢t — 7. ‘

Second, we assume that the six transition rates, /\;_,k, out
of state I are at least an order of magnitude larger than
transition rates out of states L and H. This corresponds to
the assumption that the system will exit the vicinity of the
separatrix much more quickly than the vicinity of a stable
fixed point.

Finally, we assume that for time 7 after entering state /
the system is more likely to return to its previous state.
In other words, we assume

H ! L I
Pi—u = Pi—m Pior = Pisp (2)
where
i
i = #
Plej = 3 ¥ A
I—H I—L

is the probability of transitioning from state / to state
J € {H, L} given the system was in state i a time 7 in the
past. This assumption captures the rubber band effect
illustrated in Fig. 3; i.e., delayed protein production favors
a return to the stable state that was visited last.

Metastability as a function of delay.—We now analyze
the stability of states H and L as a function of the delay 7.
Let Ry denote the residence time for state H. We compute
the expected value E[Ry]; the computations for L are
analogous. Once the system enters state H, it will make a
number of failed transitions of the form H — I — H before
eventually making a successful transition H — I — L. Let
fn denote the probability of a failed transition, that is, the
probability that a transition H — [ — H occurs conditioned
on the system having been in state H for at least time 7.
We have
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fu=0—-Zy(Dpipy + Zu(T)pi_p 3)
where we define Zy(7) by
Zy(1) = exp[—(AL, + AL )7

Note that £ is a convex linear combination of p!’ , and
pl_y. When 7 =0 (Markovian case), fy = pl_,. As 7
increases away from zero, fy moves toward pi .

Let Fy denote the random time needed to complete a
failed transition and let Sy denote the time needed for a
successful transition. Assuming that the delay is small
compared to the characteristic residence times in the stable
states, we obtain the key estimate for E[R]. Writing
R=Ry, f=fy, F=Fy, S= Sy, and A = Ai_, we
have

f 1 1
B[R]~ f(E[F] + A) FES) L @)
The primary contribution in Eq. (4) comes from the term
f(1 = f)~! representing the mean number of failed
transitions of the form H — [ — H before a successful
transition H — I — L. The terms E[F] and E[S] are not
very sensitive to 7. On the other hand, because of the
inequalities (2), f(1 — f)~! grows rapidly as 7 increases
from 7 = 0 . If the states H and L are sufficiently stable,
the expected time spent in each state before a large
fluctuation is approximately A~
Figure 4(b) illustrates that the RM qualitatively behaves
like the models shown in Fig. 2.
Concluding remarks.—The existence of multiple stable
states is a common feature of genetic networks, such as
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FIG. 4. Reduced model. (a) Sample trajectories for the three-
state RM. Top and bottom trajectories correspond to 7 = 0 and
7= 0.03, respectively. (b) The estimated increase in mean
residence time as a function of delay given by Eq. (4) (left-
hand axis, solid line) compared to values obtained by simulating
the RM (bold circles). The dashed line represents the probability
of a successful transition as a function of delay (right-hand axis).

those that determine cell fate in multicellular organisms
[17]. Since noise is ubiquitous in gene networks, mecha-
nisms that stabilize dynamics are essential. We have shown
that transcriptional delay can stabilize bistable gene net-
works. The tendency to return to the state from which the
system just escaped increases with delay.

The RM proposed in this Letter depends on neither the
explicit underlying model, the specific distribution of delay
times, nor on the exact mechanism that produces the delay.
Therefore, we conclude the following. (a) A distributed
delay will stabilize bistable systems, provided the delay
distribution is not close to the residence times of the
system; as shown in Fig. S2 of the Supplemental
Material [36], this is indeed the case. (b) A decrease in
stability can be observed by delaying degradation and
keeping production instantaneous (see Fig. S3 in the
Supplemental Material [36]). The explanation given in
Fig. 3 carries over to this case: Delayed death pushes the
system away from the stable state that was just visited.
(c) The particular details of the mechanisms that produce
the delay are not important (these mechanisms are yet to
be characterized completely experimentally). Hence, the
effect should be observable even in more detailed models
that explicitly model sequential protein production.

In some previous studies of bistable systems in the
presence of delay, it was assumed that the delay time was
on the order of the residence time [38,39]. In this case, it
was sufficient to consider reductions with only two states,
e.g., H and L. However, transcriptional delays in gene
networks are typically much smaller than residence times.
As we have shown here, in such systems it is therefore
appropriate to introduce an additional intermediate state,
e.g., I, in a reduced model.

Transcriptional delay introduces a number of other
dynamical changes to stochastic bistable systems. For
instance, typical transition paths between the stable states
change with delay (see Fig. S4 in the Supplemental
Material [36]). Such changes depend on the specifics of
the individual models, and cannot be understood using the
reduction described above. Precise results for large devia-
tions in delayed Langevin equations have been obtained
[31,40]. However, the correct Langevin approximations
of the models we consider here need to include delay in
the diffusion term [41,42]. Extensions of previous large
deviation approaches may provide more detailed informa-
tion about transitions between states in particular models
of genetic switches.
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