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We report on the results of the first-principles numerical study of spontaneous breaking of chiral

(sublattice) symmetry in suspended monolayer graphene due to electrostatic interaction, which takes into

account the screening of Coulomb potential by electrons on � orbitals. In contrast to the results of

previous numerical simulations with unscreened potential, we find that suspended graphene is in the

conducting phase with unbroken chiral symmetry. This finding is in agreement with recent experimental

results by the Manchester group [D. C. Elias et al., Nat. Phys. 7, 701 (2011); A. S. Mayorov et al., Nano

Lett. 12, 4629 (2012)]. Further, by artificially increasing the interaction strength, we demonstrate that

suspended graphene is quite close to the phase transition associated with spontaneous chiral symmetry

breaking, which suggests that fluctuations of chirality and nonperturbative effects might still be quite

important.
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In recent years significant effort has been invested into
numerical studies of the electronic transport properties of
ideal monolayer graphene [1]. Since the electromagnetic
coupling constant in graphene is effectively enhanced by
the factor c=vF � 300, where c is the velocity of light and
vF is Fermi velocity, charge carriers turn out to be strongly
coupled, and various nonperturbative phenomena such as
spontaneous breaking of chiral (sublattice) symmetry can
emerge. The existence of an insulating phase associated
with chiral symmetry breaking is one of the central ques-
tions for the theory of graphene. Since analytic calculations
become, in general, unreliable in the vicinity of the phase
transition, the position of the transition point can only be
found from first-principles numerical simulations.

In the seminal works [2] it has been realized that the
low-energy effective theory of graphene at neutrality point
can be efficiently simulated by the hybrid Monte Carlo
method, which is commonly used in lattice quantum
chromodynamics (QCD). In the more recent work [3]
hybrid Monte Carlo method was applied to perform a
direct simulation of the tight-binding model of monolayer
graphene (the possibility of such simulations was also
discussed in [4]). In these simulations only the nearest-
neighbor hopping for the � orbitals was considered, and
interelectron interactions were described by the Coulomb
law (with some finite on-site interaction potential). So far
all simulations, both with the low-energy effective theory
and with the tight-binding model, have indicated that at the
critical coupling constant �c � 1 there is a semimetal-
insulator phase transition associated with the emergence
of a mass gap in the quasiparticle spectrum due to

spontaneous chiral symmetry breaking. According to these
results suspended graphene, for which the effective cou-
pling constant is �s ¼ e2=@vF � 300=137 � 2:2, should
be deeply in the insulating gapped phase with broken chiral
symmetry (we note also that in this phase graphene is in
fact antiferromagnetic [5]).
However, these findings are in clear contradiction with

recent experimental studies of the Manchester group [6], in
which no indications of the existence of a mass gap in
suspended monolayer graphene were found. Till now the
origin of this discrepancy between experimental and nu-
merical data was not clear. In this paper we demonstrate
that if one takes into account the screening of the Coulomb
potential due to electrons on � orbitals of carbon, the
interaction between electrons should be even stronger
than in suspended graphene in order to trigger the
semimetal-insulator phase transition. To this end we per-
form hybrid Monte Carlo simulations of the tight-binding
model of monolayer graphene with the partially screened
interelectron interaction potential obtained in [7] in the
constrained random phase approximation. In the calcula-
tions of [7] only the screening due to � orbitals was taken
into account; thus, one can use it as an input to the tight-
binding model of electrons on � orbitals without any
double-counting of screening terms.
The observed shift of the phase transition thus eliminates

the controversy between experimental and numerical
results and opens up the possibility of much more realistic
first-principles Monte Carlo simulations of the electronic
properties of graphene. We further demonstrate that a
rather mild increase of interaction strength do leads to
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spontaneous chiral symmetry breaking. Due to such prox-
imity of the transition point, nonperturbative effects can be
quite important in suspended graphene.

Since the screening of the Coulomb potential due to �
orbitals is mostly important at small distances of the order
of lattice spacing [7], it seems that the position of the
semimetal-insulator phase transition is highly sensitive to
the form of the interelectron interaction potential at short
distances. We note that the high sensitivity of low-energy
effective theory to ultraviolet regularization was also dis-
covered in the work [8], where fermionic propagators were
found to be saturated by momenta of the order of inverse
lattice spacing.

The fact that in suspended monolayer graphene the
effective interelectron interaction should be weaker than
in the tight-binding model for the� orbitals was also noted
in [9] by fitting the numerical value of the renormalized
Fermi velocity vFð�Þ to the experimental data of [6]. The
corresponding value of � was estimated as �� 0:7 . . . 0:9,
which is significantly smaller than �s. Recent semianalytic
studies of the gap equations in graphene [10] has also
shown that the phase transition is shifted to larger cou-
plings if one takes into account the renormalization of the
Fermi velocity. Our results provide a microscopic expla-
nation of these findings.

The starting point of our simulations is the tight-binding
Hamiltonian with the staggered potential m,

Ĥtb¼��
X
hx;yi

ðâyy âxþ b̂yy b̂xþH:c:ÞþX
x

�mâyx âx�mb̂yx b̂x;

(1)

where � ¼ 2:7 eV, the sum
P

hx;yi is performed over all

pairs of nearest-neighbor sites of the graphene hexagonal
lattice (we impose periodic spatial boundary conditions as

in [3]) and ây, â and b̂y, b̂ are the creation or annihilation
operators for particles and holes, respectively. The latter

are related to creation or annihilation operators ĉyx;s, ĉx;s for
electrons with spin s ¼" , # as âx ¼ ĉx;", b̂x ¼ �ĉyx;#, where
we take the plus sign for x belonging to one of the simple
sublattices of graphene hexagonal lattice and the minus
sign—for another simple sublattice [3,4]. The whole
Hilbert space of the tight-binding model can be constructed

by the action of the creation operators âyx , b̂yx on the ground
state j0i fixed by the conditions âxj0i ¼ 0, b̂xj0i ¼ 0. In
this ground state each lattice site is occupied by one
electron with spin down. Of course, in Monte Carlo simu-
lations we sum over all possible states of the system, so this
choice of the ground state is only motivated by calcula-
tional convenience.

The staggered potential is equal to þm for the sites of
one simple sublattice and �m for sites of another simple
sublattice. Its role is twofold: first, it regularizes the inverse
of the fermionic kinetic operator in the hybrid Monte Carlo
algorithm [3,4]. Second, the staggered potential explicitly

breaks the chiral (sublattice) symmetry and thus serves as a
seed for spontaneous chiral symmetry breaking, which
would otherwise be impossible in a finite volume. In the
low-energy effective theory m corresponds to the Dirac
mass.
Next we introduce the interaction Hamiltonian with an

interelectron interaction potential Vxy,

ĤC ¼ 1

2

X
x;y

Vxyq̂xq̂y; (2)

where q̂x ¼ âyx âx � b̂yx b̂x is the operator of electric charge
at lattice site x.
For the on-site interaction potential Vxx � V00 and the

potentials between nearest (V01), next-to-nearest (V02), and
next-to-next-to-nearest-neighboring lattice sites (V03), we
use the values calculated in [7] (see Table I, 3d column).
The resulting shape of the potential is illustrated on Fig. 1.
At larger distances we use the Coulomb potential VðrÞ ¼
1=ð��rÞ. The form of the potential is additionally corrected
to account for periodic boundary conditions. The factor
�� � 1:41 describes the contribution of electrons on �
orbitals to the effective dielectric permittivity of graphene
monolayer at intermediate distances and is obtained by
equating V03 to the Coulomb potential at r ¼ r03 ¼
0:284 nm: V03 ¼ 1=ð��r03Þ. Physically this means that
we assume that all the charges which screen the potential
of a test charge are localized within the radius r03. It is
important to stress that this large-distance correction of the
potential by a factor 1=�� alone is insufficient to prevent
the semimetal-insulator phase transition in suspended
graphene. Indeed, since for the unscreened Coulomb pot-
ential the corresponding critical value of the coupling
constant �c � 1 [2,3] is more than two times smaller
than the effective coupling constant �s � 2:2 in suspended
graphene, the coefficient �� should be at least larger than 2
in order to shift the phase transition to �> �s. Since
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FIG. 1 (color online). A comparison of the partially screened
Coulomb potential with the exact Coulomb potential and the
potential obtained from noncompact gauge field on the hexago-
nal lattice [3].
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two-dimensional fermions cannot screen the three-
dimensional Coulomb potential at asymptotically large
distances, in this limit VðrÞ should approach the
unscreened Coulomb potential VðrÞ ¼ 1=r. However,
with lattice sizes which we use in our simulation this
asymptotics is in fact not yet relevant.

We proceed by making the standard Suzuki-Trotter
decomposition of the partition function,

Tre��ðĤtbþĤCÞ ¼ Trðe��ðĤtbþĤCÞÞNt

¼ Trðe�Ĥtb�e�ĤC�e�Ĥtb� . . .Þ þOð�2Þ; (3)

where �¼ðkTÞ�1 is the inverse temperature and �¼�=Nt

with Nt � 1. The factors in the last line of (3) are now
interleaved with decompositions of the identity operator
over Grassmann coherent states:

I¼
Z
dc d�d �c d ��e�

P
x
�c xc x�

P
x
��x�x jc ;�ihc ;�j;

jc ;�i¼e�
P

x
c xâ

y
xþ�xb̂

y
x j0i: (4)

The matrix elements hc ; �je��Ĥtb jc 0; �0i can be now
easily calculated using the identity

hc je
P

x;y
âyx Axyây jc 0i ¼ exp

�X
x;y

�c xðeAÞxyc 0
y

�
: (5)

In order to find the matrix elements of the exponent of the

interaction Hamiltonian ĤC, we perform the Hubbard-
Stratonovich transformation [4],

exp

�
��

2

X
x;y

q̂xVxyq̂y

�
ffi

Z
D’x exp

�
��

2

X
x;y

’xV
�1
xy ’y

� i�
X
x

’xq̂x

�
; (6)

where V�1
xy is the matrix inverse of the potential Vxy:P

zV
�1
xz Vzy ¼ �xy. After that we again apply the formula

(5) to the last line of (6) and finally arrive at the following
functional integral representation of the partition function

Tre��Ĥ¼
Z
D’x;nDc x;nD�x;nD �c x;nD�x;n

�e
�S½’x;n	�

P
x;y;n;n0 ð ��x;n

�Mx;y;n;n0�y;n0þ �c x;nMx;y;n;n0 c y;n0 Þ;

(7)

where S½’x;n	 ¼ ð�=2ÞPx;y;n’x;nV
�1
xy ’y;n is the action of

the Hubbard field ’x;n and n ¼ 0 . . . 2Nt � 1 enumerates

the factors in the last line of (3). The fermionic part of the
action is written as follows:

X
x;y;n;n0

�c x;nMx;y;n;n0c y;n0

¼ XNt�1

k¼0

�X
x

�c x;2kðc x;2k � c x;2kþ1Þ

� ��
X
hx;yi

ð �c x;2kc y;2kþ1 þ �c y;2kc x;2kþ1Þ

þX
x

�c x;2kþ1ðc x;2kþ1 � e�i�	x;kc x;2kþ2Þ

þ �
X
x

�m �c x;2kc x;2kþ1

�
: (8)

In this expression the Grassmann variables c x;2k and

c x;2kþ1 label the fermionic coherent states inserted

between the factors e�Ĥtb�, e�ĤC� and e�ĤC�, e�Ĥtb� in
(3), respectively. It can be shown that such a ‘‘double-
layer’’ structure of the action leads to discretization errors
of the order of �, in contrast to simpler fermionic action
constructed in [4], for which discretization errors scale asffiffiffiffi
�

p
. In practice, this form of the action allows one to obtain

numerical results with sufficiently good precision even at
quite coarse lattices (Nt � 10 . . . 20, �� 0:1�). We also
impose antiperiodic boundary conditions in time direction
on fermionic variables c x;n, �x;n in (8).

Now the Grassmann variables in (7) can be integrated
out, which yields the following representation of the
partition function:

Tre��Ĥ ffi
Z

D’x;ne
�S½’x;n	j detðM½’x;n	Þj2: (9)

The manifest positivity of the integration weight in (9) is
due to the symmetry between particles and holes for gra-
phene at neutrality point. For example, at finite chemical
potential the two fermionic determinants appearing in (9)
after integration over c x;n and �x;n in (7) would no longer

be complex conjugate, which would make Monte Carlo
simulations much more difficult due to the fermionic
sign problem. For our choice of the interelectron interac-
tion potential, the action of the Hubbard field S½’x;n	 is
also a positive definite quadratic form. Thus we can gen-
erate the configurations of ’x;n by a Monte Carlo method

and calculate physical observables as averages over the
generated configurations. Here we follow [3,4] and use
the hybrid Monte Carlo method with the � algorithm.
Inversion of the fermionic operator M, which is the most
difficult part of this algorithm, was accelerated using
graphic processing units.
In order to detect the chiral symmetry breaking, we

calculate the chiral condensate, which is the difference of
particle numbers on the two simple sublattices A and B,

h�ni ¼ 1

N

�X
x2A

ðâyx âx þ b̂yx b̂xÞ �
X
x2B

ðâyx âx þ b̂yx b̂xÞ
�
;

(10)
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where N is the overall number of sites of one sublattice of
hexagonal lattice. In terms of the fermionic operator
Mx;y;n;n0 this expectation value reads

h�ni ¼ 1

NNt

X2Nt�1

n¼0

�X
x2A

M�1
x;x;n;n �

X
x2B

M�1
x;x;n;n

�
; (11)

where the average is now taken over configurations of the
Hubbard field with the weight (9).

Our simulations were performed on the lattice with
spatial size 18� 18 and Nt ¼ 20, � ¼ 0:1 eV�1, which
corresponds to the temperature T¼0:5 eV¼5:8�103 K.
This temperature is considerably higher than in real
experiments; however, in our simulations it is the tem-
perature of the electron gas only. We do not consider
thermal fluctuations of the crystalline lattice; thus, the
phonon temperature is formally zero. We rely here on
the results of [3], which indicate that as long as the
electron temperature is much smaller than the hopping
parameter � in (1), it does not significantly affect the
insulator-semimetal phase transition. To study the behav-
ior of the condensate (10) in the limit m ! 0, we perform
simulations at five different values of the staggered poten-
tial: m ¼ 0:1, 0.2, 0.3, 0.4, 0.5 eV. The interaction strength
is controlled by additionally rescaling the potential by
some factor �: Vxy ! Vxy=�.

The coefficient � can be thought of as the dielectric
permittivity of the medium surrounding the graphene
monolayer. However, to make this interpretation physically
consistent one should also redo the calculations of [7]
taking into account this additional screening. In our case
� has no direct physical interpretation and is only used to
characterize the proximity of suspended graphene (which
corresponds to � ¼ 1) to the phase transition. For each set
of lattice parameters we have generated 100 statistically
independent configurations of the field ’x;n.

The dependence of the chiral condensate (11) on � for
� 
 1 is illustrated on Fig. 2. To obtain the plotted values
of �n, we have fitted the mass dependence of the conden-
sate �nðmÞ by a quadratic function of m and used this
fit to extrapolate �nðmÞ to m ¼ 0. These fits are shown on
Fig. 2 in the inset. One can see that the extrapolated value
�nðm ! 0Þ for suspended graphene (� ¼ 1) is equal to
zero within error range, which indicates the absence of
chiral symmetry breaking. We have also checked this
result on the larger (24� 24, Nt ¼ 20, � ¼ 0:1 eV�1)
and finer (24� 24, Nt ¼ 40, � ¼ 0:05 eV�1) lattices and
on the larger set of 250 configurations of ’x;n. All our

measurements confirm that after extrapolation to m ¼ 0,
the chiral condensate is equal to zero for suspended
graphene.

Only at � < �c � 0:7 the extrapolation to m ! 0 yields
nonzero chiral condensate, which suggests that the state
with broken chiral symmetry is favored, and spontaneous

chiral symmetry breaking is likely in the infinite volume
limit. The fact that the critical value �c � 0:7 is quite close
to one suggests that while suspended graphene is still in the
conducting phase with unbroken chiral symmetry, the
proximity of the phase transition can still manifest itself
in large fluctuations of order parameter (chiral condensate)
and in other nonperturbative phenomena.
We conclude that the screening of the Coulomb potential

by electrons on� orbitals strongly influences the insulator-
semimetal phase transition in monolayer graphene, so
that the transition point is shifted into the region of
parameter space in which the interaction strength is even
stronger than in suspended graphene. This shift provides
possible explanation of the long standing discrepancy
between numerical [2,3] and experimental [6] data on
spontaneous gap generation in suspended graphene. We
also note an intriguing possibility to effectively enhance
the interelectron interactions by stretching the graphene
layer [7], which can be used to reach the transition point
in experiment.
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FIG. 2 (color online). The dependence of the chiral condensate
(11) on � and on m (in the inset) for the 18� 18 lattice with
Nt ¼ 20 and � ¼ 0:1 eV�1. For � ¼ 1:0 we show the results
obtained on the 24� 24 lattice with Nt ¼ 40, � ¼ 0:05 eV�1.
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