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When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-

reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics,

radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread.

Here we show that when quantum effects become important, radiation reaction induces the opposite

effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse.

We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon

emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that

the predicted effects of the stochasticity can be measured already with presently available lasers and

electron accelerators.
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A deep understanding of the dynamics of electric
charges driven by electromagnetic fields is one of the
most fundamental problems in physics, as it has implica-
tions in different fields, including accelerator, radiation,
and high-energy physics. Apart from its impact on practi-
cal issues, as the construction of new experimental devices
(e.g., quantum x-free electron lasers [1]), the investigation
of the dynamics of electric charges (electrons, for definite-
ness) is also of pure theoretical interest, as it involves in
general a coupled interplay between the electrons and their
own electromagnetic field.

In the realm of classical electrodynamics, radiation-
reaction (RR) effects stem from the backreaction on the
electron dynamics of the electromagnetic field generated
by the electron itself while being accelerated by a
background electromagnetic field [2,3]. The Landau-
Lifshitz (LL) equation has been recently identified as
the classical equation of motion of an electron (mass m
and charge e<0), including RR effects self-consistently
[2–7], although alternative models have been suggested
[8,9]. The analytical solution of the LL equation in a
plane-wave field [10] shows that if an electron impinges
with initial four-momentum p

�
0 onto a plane-wave

field (electric-field amplitude E0, central angular fre-
quency !0, and propagating along the direction n),
RR effects substantially affect the electron dynamics,
if Rc¼��0�0*1 (see also [11]). Here, � ¼ e2 is the
fine-structure constant, �0 ¼ ½ðnp0Þ=m�E0=Ecr, with
n� ¼ ð1;nÞ and Ecr¼m2=jej¼1:3�1016V=cm, and �0 ¼
jejE0=m!0 (units with @ ¼ c ¼ 1 are used throughout).
The parameter Rc corresponds in order of magnitude
to the average energy radiated by the electron in one
laser period in units of the initial electron energy, and,
although �0 � 1 in the realm of classical electrodynam-
ics [2], it can be of the order of unity [4,10,11]. For an
ultrarelativistic electron initially counterpropagating
with respect to the laser field with energy ", it is

Rc¼3:2"½GeV�I0½1023W=cm2�=!0½eV�, with I0¼E2
0=4�

being the laser pulse peak intensity. The numerical value
of the parameter Rc shows the generally demanding
requirements to observe large RR effects, and it explains
why the LL equation still lacks an experimental confirma-
tion (see [11–14] for recent experimental proposals).
The expression of the parameter Rc is also in agreement
with the well-known classical result that more energetic
particles radiate more at given other conditions [15].
In turn, this explains physically the beneficial effect of
RR when it is included, e.g., in the investigation of the
production of electron [16] and ion [17–20] bunches in
laser-plasma interaction. In fact, it is found that RR acts
as a cooling mechanism and its effects render the energy
spectra of the produced particle bunches more monochro-
matic than if RR is not included.
In this Letter, we show that when quantum effects

become important RR induces exactly the opposite behav-
ior and makes the energy distribution of an electron beam
initially counterpropagating with respect to a strong laser
field broader than it was before the interaction. We explain
this striking difference between classical and quantum
RR by relating it to the stochastic nature of the emission
of radiation, which becomes substantial in the quantum
regime and which can be described at small �0’s via an
additional stochastic term in the LL classical equation. By
means of numerical simulations, we show that the broad-
ening of the electron energy distribution in the quantum
regime is measurable in principle with presently available
technology also in an all-optical setup. Our results are
relevant for future laser-based electron accelerators, indi-
cating that one cannot rely on the beneficial effects of RR
on the energy spread of the electron beam at sufficiently
high electron energies that quantum effects become impor-
tant. We note that the stochastic nature of photon emission
has instead been shown to lower the laser intensity thresh-
old at which electromagnetic cascades are generated [21]
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and to broaden the transverse spatial distribution of
an electron bunch in the focusing magnetic fields of a
synchrotron [22].

Taking into account exactly RR in the full strong-field
QED regime amounts to determining completely the
S-matrix in the Furry picture [2], which describes the
interaction of the electron-positron field with the radiation
field in the presence of the strong background electromag-
netic field. This is a formidable task and, thus, we limit
here to the so-called ‘‘nonlinear moderately quantum’’
regime [23], where (i) �0 � 1, such that nonlinear effects
in the laser field amplitude are large, and (ii) �0 & 1,
such that nonlinear QED effects are already important,
but electron-positron pair production is still negligible.
In this regime, RR effects on the electron dynamics in a
strong plane-wave field mainly stem from the sequential
emission of many photons by the electron, and they can be
investigated by means of a kinetic approach [24–26] (see
[23], for an alternative, microscopic approach). In this
approach, the electrons and the photons are described by
distribution functions in phase space, which obey kinetic
equations. Since electron-positron pair production is
neglected, (i) the distribution function of positrons can be
assumed to vanish identically, and (ii) the kinetic equation
for the electron distribution function is not coupled to that
of the photons [24–26]. Another realistic approximation,
which allows us to avoid technical complications in favor
of a clearer physical understanding, is to consider an
electron bunch initially counterpropagating with respect
to the laser field and with a typical energy "� � m�0. This
is the case, for example, in the realistic situation of an
electron bunch with typical energy "� ¼ 1 GeV colliding
head-on with an optical (!0 ¼ 1:55 eV) laser field of
intensity 1022 W=cm2 [27] for which m�0 ¼ 24 MeV.
The condition "� � m�0 ensures that the transverse
momentum of the electrons (with respect to the initial
propagation direction) remains much smaller than the
longitudinal one in passing through the plane wave [4],
and this reduces the present problem to a one-dimensional
one (see Supplemental Material [28]).

By assuming that the plane wave propagates along the
positive y direction and that it is linearly polarized along
the z direction, we can write its electric field as Eð’Þ ¼
E0fð’Þẑ, where ’ ¼ !0ðt� yÞ is the laser phase and
fð’Þ is the pulse-shape function such that jfð’Þjmax ¼ 1.
If p� ¼ ð";pÞ is the four-momentum of an electron, it
is convenient to introduce the ‘‘minus’’ momentum p� ¼
"� py, which is a constant of motion in the plane-wave

field under consideration [4]. However, if the electron
emits a photon with four-momentum k� ¼ ð!; kÞ, then
its four-momentum changes to p0� ¼ ð"0;p0Þ and p0� ¼
p� � k�, with p0� ¼ "0 � p0

y and k� ¼ !� ky. The

single-photon emission probability per unit phase ’ and
per unit u ¼ k�=ðp� � k�Þ in the ultrarelativistic regime
�0 � 1 reads [see Eq. (49) on p. 559 in [29]]

dPp�
d’du

¼ �ffiffiffi
3

p
�

m2

!0p�
1

ð1þ uÞ2
��

1þ uþ 1

1þ u

�

� K2=3

�
2u

3�ð’;p�Þ
�
�

Z 1

2u=½3�ð’;p�Þ�
dxK1=3ðxÞ

�
;

(1)

where K�ð�Þ is the modified Bessel function of �th order
and where �ð’;p�Þ ¼ ðp�=mÞjEð’Þj=Ecr, with Eð’Þ ¼
E0fð’Þ. Since the probability in Eq. (1) depends only on
the phase-space variables ’ and p�, it is possible to
describe the electron beam via an electron distribution
neð’;p�Þ, which satisfies the kinetic equation (see [25]
and Supplemental Material [28])

@ne
@’

¼
Z 1

p�
dpi;�

dPpi;�

d’dp�
ni;e � ne
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0
dk

dPp�
d’dk�

; (2)

with ne ¼ neð’;p�Þ, ni;e ¼ neð’; pi;�Þ, and
dPpi;�

d’dp�
¼ pi;�

p2�

dPpi;�

d’du

��������u¼ðpi;��p�Þ=p�
; (3)

dPp�
d’dk�

¼ p�
ðp� � k�Þ2

dPp�
d’du

��������u¼k�=ðp��k�Þ
: (4)

Equation (2) is an integro-differential equation; i.e., it is
nonlocal in the momentum p�. This is intimately con-
nected to the quantum nature of the emission of radiation.
In fact, the latter is described quantum mechanically as the
emission of photons, which carry energy and momentum,
such that, if an electron emits a photon with momentum
k�, its initial state with a given momentum p0;� will be

coupled to that with momentum p0;� � k�, with k� rang-

ing from 0 to p0;�. Note that the complete distribution

function of the electron bunch also contains a dependence
on the variable T ¼ ðtþ yÞ=2 (see Supplemental Material
[28], where we show that, in the present regime, the center
of the electrons’ spatial distribution moves along the
negative y axis according to the equation y � �t and
without changing its shape).
In order to investigate the classical limit of Eq. (2) for

�ð’;p�Þ � 1, it is convenient to perform the change of
variable v ¼ ðpi;� � p�Þ=p��ð’; p�Þ [v ¼ k�=ðp� �
k�Þ�ð’;p�Þ] in the first (second) integral in Eq. (2).
By expanding the resulting equation in �ð’; p�Þ and by
keeping terms up to the order �3ð’;p�Þ, one obtains the
Fokker-Planck-like equation [30] (see also [26,31])

@ne
@’

¼ � @

@p�
½Að’;p�Þne� þ 1

2

@2

@p2�
½Bð’; p�Þne�; (5)

with a ‘‘drift’’ coefficient Að’; p�Þ and a ‘‘diffusion’’
coefficient Bð’;p�Þ given by

Að’;p�Þ¼�2�m2

3!0

�2ð’;p�Þ
�
1�55

ffiffiffi
3

p
16

�ð’;p�Þ
�
; (6)
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Bð’; p�Þ ¼ �m2

3!0

55

8
ffiffiffi
3

p p��3ð’; p�Þ; (7)

respectively. Note that Eq. (5) is no longer an integro-
differential equation but rather a partial differential equa-
tion. In other words, at small quantum photon-recoil effects,
the distribution function of electrons with momentum
p� depends essentially only on its values close to p� and
its dynamics is local. Higher-order corrections in �ð’;p�Þ
would result in the appearance of terms proportional to
higher derivative’s order of neð’;p�Þ with respect to p�.

If we first consider only the terms proportional to
�2ð’; p�Þ in Eq. (5), this equation has the form of a
Liouville equation:

@ne
@’

¼ � @

@p�

�
ne

dp�
d’

�
;

dp�
d’

¼ � Iclð’;p�Þ
!0

(8)

with Iclð’;p�Þ ¼ ð2=3Þ�m2�2ð’; p�Þ being the classical
intensity of radiation [4]. The equation for p� in Eq. (8) is
exactly the classical single-particle equation resulting
from the LL equation [10] (see also [32]). In other words,
the terms in Eq. (5) proportional to �2ð’; p�Þ describe the
classical dynamics of the electron distribution including
RR. The fact that Eq. (8) has the form of a Liouville
equation implies, as it must be, that the classical dynam-
ics of the electron distribution is deterministic [30].
Also, since the single-particle equation in Eq. (8) admits

the analytical solution [10] pðcÞ� ð’;p0;�Þ¼p0;�=hð’;p0;�Þ,
with hð’; p0;�Þ ¼ 1 þ ð2=3Þ�ðp0;�=!0ÞðE2

0=E
2
crÞ �R’

0 d’0f2ð’0Þ for an electron with initial momentum

p�ð0Þ ¼ p
�
0 ¼ ð�0;p0Þ (p0;� ¼ �0 � p0;y), one can write

explicitly the exact analytical solution of Eq. (8) by means
of the method of characteristics (see also [33–35] and [36]
for the solution in a constant electromagnetic field of differ-
ent configurations and in a monochromatic plane wave,
respectively). If the distribution neð0; p�Þ at the initial phase
’ ¼ 0 is given, for example, by the Gaussian distribution
neð0;p�Þ¼Nexp½�ðp��p��Þ2=2�2

p��, where N is a nor-

malization factor, p�� is the average value of p�, and �p� is

the standard deviation [37], then the solution of Eq. (8) reads

neð’;p�Þ ¼ N

g2ð’;p�Þ
exp

�
� 1

2�2
p�

�
p�

gð’;p�Þ � p��
�
2
�
;

(9)

with gð’; p�Þ ¼ hð’;�p�Þ. Since p0;� in hð’; p0;�Þ is

positive for finite values of p0;y and p0;� ! 0 only at py !
þ1, and since p0;� ¼ pðcÞ� ð’;p0;�Þgð’; pðcÞ� ð’; p0;�ÞÞ, the
function gð’; p�Þ must be non-negative for all values of ’,
and the equation gð’; p�;maxÞ ¼ 0 fixes the maximum value

p�;max ¼ p�;maxð’Þ allowed for the variable p� at each ’.

Moreover, we observe that 0< @pðcÞ� ð’; p0;�Þ=@p0;� < 1
for ’> 0, such that, due to RR effects, the difference
�p�ð’Þ between the momenta of two electrons decreases
for increasing values of ’. This implies that classical RR

effects tend to decrease the energy width of the electron
distribution in agreement with previous results obtained in
studying the production of particle beams via laser-plasma
interaction [16–20]. Also, if �p� � p�� in Eq. (9), it can

be seen that the distribution neð’;p�Þ is approximately a

Gaussian centered at pðcÞ� ð’;p��Þ and with effective width

�ðcÞ
p�ð’;p��Þ � �p�=h

2ð’; p��Þ decreasing at increasing’’s.
The quantum corrections in Eq. (5) to the classical

kinetic equation (8) stem from two different contributions.
The first one affects the drift coefficient Að’; p�Þ [see
Eq. (6)], and it coincides with the leading quantum correc-
tion to the total intensity of radiation found in Refs. [25,29].
This correction does not change the structure of the classical
kinetic equation (8) but only the ‘‘effective’’ momentum
change per unit phase. Since this leading quantum correc-
tion is negative, we expect that it tends to decrease the
reduction of the width with respect to the classical predic-
tion. However, by replacing the classical intensity of
radiation Iclð’; p�Þ with the corresponding quantum one
Iqð’; p�Þ [see, e.g., Eq. (83) on p. 522 in [29]], the resulting
Liouville equation would still predict a reduction of the
width of the electron distribution function. This statement
can be proven mathematically, but it can also be understood
intuitively as quantum mechanically more energetic elec-
trons on average emit more radiation. On the other hand,
however, the second leading quantum correction corre-
sponds to the diffusion coefficient Bð’;p�Þ in Eq. (7),
and it alters the structure of the classical kinetic equation.
The appearance of a diffusionlike term in the kinetic
equation of the electron distribution is intimately connected
to the stochastic nature of the quantum emission of
photons. According to the theory of stochastic differential
equations, in fact, the Fokker-Planck-like equation (5) is

equivalent to the single-particle stochastic equation dp� ¼
�Að’;p�Þd’þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bð’; p�Þ
p

dW, where dW represents an
infinitesimal stochastic function [30]. The diffusion term in
Eq. (5) also tends to increase the width of the distribution
function [30], and, as we will see numerically, it is respon-
sible of the broadening of the distribution function. It can
be shown, for example, that a Gaussian distribution centered
at p�� and with width �p� � p�� at ’ ¼ 0 remains appro-

ximately Gaussian at ’> 0, centered at pðqÞ� ð’; p��Þ �
pðcÞ� ð’; p��Þ½1þ 	hð’; p��Þ� and with width

�ðqÞ
p�ð’; p��Þ � �ðcÞ

p�ð’;p��Þ
�
1þ 2	hð’; p��Þ

þ 1

2�2
p�

Z ’

0
d’0Bð’0; p��Þ

�
; (10)

where the correction 	hð’;p��Þ ¼ ½55 ffiffiffi
3

p
=16hð’;p��Þ�R’

0 d’
0�ð’0; p��Þ@ loghð’0; p��Þ=@’0 > 0 is due to the

quantum correction to the drift coefficient. Equation (10)
shows that both mentioned quantum effects tend to incre-
ase the width of the distribution function. Moreover,
the correction induced by the diffusion term is roughly
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 ¼ p�2� =�2
p � 1 times larger than 	hð’; p��Þ, and the

approximated approach based on the Fokker-Planck equa-
tion is valid at ��0
�L�

�2 � 1, with �L being the total
laser phase. Finally, we mention that the Fokker-Planck
equation in some situations, like in the case of an initial
	-like momentum distribution and vanishing drift term,
predicts the appearance of spurious particles with momen-
tum larger than the initial one. This indicates that a
completely consistent treatment requires the solution of
the full equation (2), which will be carried out below
numerically.

In Supplemental Material [28], it is shown that the effect
on the broadening of the electron momentum distribution
can also be interpreted in terms of the entropy of the
distribution itself.

In order to show that the effects discussed above can be
in principle measured with presently available technology,
we consider below two numerical examples. In both cases
we assume a laser pulse with fð’Þ ¼ sin2ð’=2NLÞ sinð’Þ
for ’ 2 ½0; ’f� ¼ ½0; 2NL�� and zero elsewhere, where

NL is the number of laser cycles and with !0 ¼ 1:55 eV,
and an initial Gaussian electron distribution with a total
number of 1000 electrons.

In the first numerical example, we choose the laser and
electron parameters such that quantum effects are negli-
gible, whereas RR effects are relatively large. We set
I0 ¼ 4:3� 1020 W=cm2 (�0 ¼ 10), p�� ¼ 84 MeV ("� �
p��=2 ¼ 42 MeV) such that �� ¼ ðp��=mÞðE0=EcrÞ � 5�
10�3, �p� ¼ 8:4 MeV, and NL ¼ 1600 (pulse duration �

of about 4 ps). The results for the initial and final distribu-
tion are shown in Fig. 1. As expected, the final distribution
neð’f; p�Þ, calculated by solving numerically Eq. (2)

(solid, red line), and the classical analytical solution
nLLe ð’f; p�Þ [see Eq. (9)] are very similar and both show

a reduction of the width from 8.4 to 4.7 MeV. Note that the
average energy "�f ¼ 30 MeV of the final distribution also

fulfills fairly well the condition "�f � m�0 ¼ 5 MeV [see

the discussion around Eq. (3) of Supplemental Material
[28]]. In the second numerical example, instead, we want
to probe the quantum regime, and we set I0 ¼ 2�
1022 W=cm2 (�0 ¼ 68) [27], p�� ¼ 2 GeV ("� � 1 GeV)
such that ��¼0:8, �p� ¼ 0:2 GeV, and NL¼10 (� �
30 fs). Electron beams with such energies are nowadays
available not only in conventional accelerators but also by
employing plasma-based electron accelerators [38,39],
allowing in principle for an all-optical setup. The results
of our numerical simulations are shown in Fig. 2. The
figure shows that the full quantum calculations based
on Eq. (2) predict a broadening of the electron distribution
[Fig. 2(b)], according to our analysis above, whereas the
classical calculations based on the exact solution in Eq. (9)
[see Fig. 2(c)] predict a strong narrowing of the distribu-
tion. Moreover, according to the discussion above Eq. (10),
if we consider the classical equation (8) and we perform
the substitution Iclð’;p�Þ ! Iqð’;p�Þ, the corresponding
results [see Fig. 2(d)] still predict a narrowing of the
distribution function. This clearly supports the idea that
the broadening of the electron distribution is an effect of
the importance of the stochasticity of the emission of
radiation, which becomes substantial in the quantum
regime. Finally, we notice that the average energy "�f of

the final electron distribution, also according to the most
unfavorable classical treatment ("�f ¼ 173 MeV), fairly

well fulfills the condition "�f � m�0 ¼ 35 MeV [see the

discussion around Eq. (3) of Supplemental Material [28]].
The authors gratefully acknowledge useful discussions

with J. G. Kirk, N.V. Elkina, and T. Blackburn.

FIG. 1 (color online). Comparison of the initial electron
distribution (dotted, blue line) and the final electron distribution
according to Eq. (2) (solid, red line) and to Eq. (9) (dashed, green
line), as functions of p�=2 � ". The laser and the electron
distribution parameters are given in the text.

(a) (b)

(c) (d)

FIG. 2 (color online). Phase evolution of the electron distribu-
tion as a function of p�=2 � " for a 10-cycle sin2-like laser
pulse [part (a)] according to Eq. (2) [part (b)], to Eq. (9) [part
(c)], and to Eq. (8) with the replacement Iclð’; p�Þ ! Iqð’; p�Þ
[part (d)]. The laser and the electron distribution parameters are
given in the text.
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