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In pattern-forming systems, localized patterns are states of intermediate complexity between fully

extended ordered patterns and completely irregular patterns. They are formed by stationary fronts

enclosing an ordered pattern inside an homogeneous background. In two dimensions, the ordered pattern

is most often hexagonal and the conditions for fronts to stabilize are still unknown. In this Letter, we show

how the locking of these fronts depends on their orientation relative to the pattern. The theory rests on

general asymptotic arguments valid when the spatial scale of the front is slow compared to that of the

hexagonal pattern. Our analytical results are confirmed by numerical simulations with the Swift-

Hohenberg equation, relevant to hydrodynamical and buckling instabilities, and a nonlinear optical cavity

model.
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Pattern-forming instabilities are responsible for the emer-
gence of regular or semiregular structures in a wide variety
of contexts. Examples include chemical Turing patterns [1],
hydrodynamic convection [2,3], ferrosolitons [4], cavity
solitons [5], and buckling instabilities [6,7]. Usually,
patterns bifurcate from an homogeneous state and lead to
periodic spatial modulation of the quantity of interest
(chemical concentrations, velocity fields, optical intensity).
If both the pattern and the homogeneous state coexist, then
there exists a range of parameters for which islands of
patterns are embedded in an homogeneous background.
Recently, localized convection patterns were discovered in
planar Couette flow and a connection with localized turbu-
lence was speculated [8]. Such a situation, while very rich
from a dynamical point of view, is still amenable to a simple
description in terms of fronts connecting the pattern and the
homogeneous state. It is therefore important to understand
under which conditions such fronts can be stationary.
A lot of progress has already been made towards the under-
standing of these fronts in one dimension (1D). They are
based, on the one hand, on geometrical arguments in phase
space [9–11] and, on the other hand, on beyond-all-order
asymptotic techniques [12–14]. The latter allows one to
properly describe front locking—also called ‘front pinning’
[15,16]—through the interaction between the slow spatial
scale of the front and the fast spatial scale of the pattern.
Thanks to these and other approaches involving asymptotic
and numerical studies [17–22], a coherent picture is now
emerging for 1D localized patterns.

For localized patterns on the plane (2D), research is
intensifying. The pinning region of localized hexagonal
patterns was computed numerically in Refs. [23,24]; a det-
ailed analysis of radial patterns was conducted in Ref. [25];
meanwhile 2D localized roll patterns and ‘worm’ patterns
were studied in Refs. [19,26,27]. Regarding localized

hexagonal patterns however, the amount of available ana-
lytical information past the mere writing of the Ginzburg-
Landau equations for the envelope of the pattern is still
scarce. Indeed these equations are too complicated even
to find analytical front solutions in general [28,29].
Nevertheless, the method used in Refs. [12–14] can be
carried sufficiently far in 2D to relate the size of the pinning
region to the front orientation for a broad class of pattern-
formationmodels in the small-amplitude limit.Wewill show
that fronts that are parallel to one side of the elementary
hexagon of the pattern have the widest range of existence.
The nextwidest range of existence is found for fronts that are
perpendicular to one side of the elementary hexagon. In fact,
a complete hierarchy of front pinning ranges versus orienta-
tion can be established. Since in many cases fronts make up
the boundary of localized patterns, this sets strong geomet-
rical constraints on the shape of 2D localized patterns. These
findings will be illustrated with two physical models:

@u

@t
¼ ru� ð1þr2Þ2uþ su2 � u3; (1)

and

@E

@t
¼ EI �

�
1þ 2C

1þ jEj2
�
Eþ ið�þr2ÞE: (2)

Equation (1) is the prototype model for pattern formation.
Initially derived (with a cubic nonlinearity only) for con-
vective instabilities [30], it is the simplest model for the
Turing instability and is widely used to interpret more
complicated and physically realistic problems [31,32].
Equation (2) describes the envelope of the electric field in
the transverse plane of a nonlinear optical cavity [23].
Above, EI is an injection field amplitude, � is the cavity
detuning, and C is the strength of the light-matter interac-
tion. If one expresses EI as
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EI ¼
��������1þ i�þ 2C

1þ I

��������I1=2; (3)

then the homogeneous steady state is simply given by
jEj2 ¼ I. For the sake of simplicity, we will fix the value
� ¼ 1 and use C as a parameter. Both models above exhibit
a Turing instability and can display localized patterns in
proper regions of parameter space: (r, s) in Eq. (1) and
(I, C) in Eq. (2). The aim of this Letter is to determine the
size of these existence regions as a function of the orientation
of the pattern boundaries.

Upon elementary changes of variable, Eqs. (1) and (2)
can be put, in steady state, in the general form

Lðu;r2u;r4u; . . . ; �; �Þ þN ðu; �; �Þ ¼ 0; (4)

where uðx; yÞ is a vector field (set of chemical concentra-
tions, electric field, elastic displacement field),L is a linear
operator involving r2, r4, or a higher-order composition
thereof, and N is the nonlinear part of the mathematical
model, being at least quadratic in u as u ! 0. Finally,
(�, �) are two control parameters. Without loss of general-
ity, we may assume that the spatially uniform solution of
Eq. (4) is given by u ¼ 0 and that � ¼ 0 is the bifurcation
point to spatially periodic solutions. Hence, we wish to
derive an expression for the width of the pinning region
��ð�Þ when 0< � � 1.

We begin by recalling general results [29,31]. At the
bifurcation point, there is an eigenvector uT and a real
wave number k such that uT expðik � xÞ solves the linear
part of Eq. (4):

LðuT;�k2uT; k
4uT; . . . ; 0; �Þ ¼ 0; k2 ¼ k � k: (5)

Any combination of plane waves of the form uTexpðik0 �xÞ
satisfies Eq. (5) as long as k0 � k0 ¼ k2. What matters here
is that

r2eik�x ¼ �k2eik�x: (6)

Hexagonal patterns are composed of triads ki, i ¼ 1, 2, 3,
of such wave vectors, which satisfy k1 þ k2 þ k3 ¼ 0.
Following standard procedures, we seek an approximate
solution of the form

u��uT

X3
l¼1

alðXÞeikl�xþc:c:; X¼ �x; �� 1; (7)

where c.c. means ‘complex conjugate’ and where x and X
are treated asymptotically as independent variables. To be
able to describe a front, the amplitudes ai are allowed to
vary slowly in the x direction. With proper definitions of �
and �, the amplitude equations have the general form

4n2i a
00
i ¼ aið1þ jaij2 þ 2jajj2 þ 2jakj2Þ þ � �aj �ak; (8)

where fi; j; kg is any permutation of f1; 2; 3g and ni is the
direction cosine between the vector ki and the x axis.
In Eq. (1), for instance, one should take r ¼ ��2 and

s¼ ffiffiffiffiffiffiffiffi
3=4

p
��, while in Eq. (2), one must set I¼

3þ ffiffiffiffiffiffiffiffi
4=3

p
�� and C ¼ 4þ �2ð�2 � 4Þ=3.

These equations have the first integral

X
i

�
4n2i ja0ij2 � jaij2 � jaij4

2
� 2ja1a2a3j2

jaij2
�

� �ða1a2a3 þ �a1 �a2 �a3Þ; (9)

which implies that front solutions exist at � ¼ � ffiffiffiffiffiffiffiffiffiffiffi
45=2

p
.

The corresponding hexagon amplitude is a1 ¼ a2 ¼ a3 ¼ffiffiffiffiffiffiffiffi
2=5

p
. Additional terms proportional to nj �a

0
j �ak þ nk �aj �a

0
k

sometimes appear in Eq. (8) (see Ref. [29].) They preclude
the existence of a first integral. In this work, we focus
on the frequent case where they are absent, so that the
existence of a monotonic front solution can be ensured.

Taking � ¼ � ffiffiffiffiffiffiffiffiffiffiffi
45=2

p
, fronts are thus expected from the

above theory on the lines ðr; sÞ ¼ ð��2;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
135=8

p
�Þ and

ðI; CÞ ¼ ð3� ffiffiffiffiffiffi
30

p
�; 4þ 37�2=6Þ in the two examples

considered. However, fronts are known to exist on a finite
area of the parameter space—not just a line—and we now
proceed to determine it.
In fact, expression (7) is only the first term of a more

general asymptotic approximation

uðx; y; �Þ ¼ XN
n¼1

�nunðx; y;XÞ þ RNðx; y; �Þ: (10)

The power series above diverges asN ! 1 and has therefore
to be truncated. Truncating the series near its smallest term
leaves the remainder RN exponentially small in �. It is the
study of RN that gives access to the front dynamics [12–14].
RN is mainly determined by the terms in Eq. (10) that

diverge most rapidly as n ! 1. A typical cause of diver-
gence of asymptotic expansions is the presence of complex
singularities in the leading-order solution [33]. Denoting
one such singularity byX0, we expect that theOð�nÞ term of
Eq. (10) contains, among others, contributions of the form

�nbq
�ð�þ nÞeiq�x

½�i�kðX � X0Þ�n uT; n � 1; (11)

where q ¼ m1k1 þm2k2, and bq, �, and �k are constants

with m1 and m2 integers. The vector q arises from the
mixing of k1, k2, and k3 due to the nonlinearity, and can
bewritten in terms ofk1 andk2 only sincek3 ¼ �k1 � k2.
The above ansatz arises from condition (6), which deter-
mines themost unstablemodes at the bifurcation point �¼0.
In the frame of the multiple-scale analysis, the Laplacian
operator is replaced by r2!r2þ2�@x@Xþ�2@2X. Hence,
at Oð�nÞ, r2u yields r2un þ 2@x@Xun�1 þ @2Xun�2.
Substituting expression (11), one easily sees that this yields

� ½ðqx þ �kÞ2 þ q2y þOð1=nÞ� �
nbq�ð�þ nÞeiq�xuT

½�i�kðX � X0Þ�n
(12)
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where qx and qy are the Cartesian coordinates of q in the

(x, y) frame.With appropriate choices ofq and�k, one may
have ðqx þ�kÞ2 þ q2y ¼ k2. As a result, terms of the form

(11) approximately solve the linear part of Eq. (4) and we
expect them to dominate the series (10) for large n. Let the x
axis coincide with a direction of translational symmetry
of the lattice spanned by k1 and k2; then �k is such that
(qx þ�k, qy) coincides with one of�ki. Note that, in that

case, a countable infinity of allowed values exist for �k,
each in principle leading to a set of terms of the form (11).

Terms like expression (11), although formally nonreso-
nant, may become resonant over a short portion of the real
X axis: this is where the interaction between the slow
and fast spatial scales occurs, as discussed in detail in 1D
[12–14]. Indeed, supposing that X0 is above the real line
and that �k < 0, let us examine the region of the complex
plane given by X¼X0�irþ�, with j�j�r. With the aid

of Stirling’s approximation �ðzþ �Þ � ffiffiffiffiffiffiffi
2�

p
zzþ��1=2e�z,

expression (11) locally becomes

�nbq
ffiffiffiffiffiffiffi
2�

p
n��1=2nne�neiq�xuT

½��kðrþ i�Þ�n

� bq
ffiffiffiffiffiffiffi
2�

p
n��1=2

�
�n

��kr

�
n
e�neiq�x�in�=ruT: (13)

This expression is smallest for n¼N���kr=�. Inserting
this value and using the fact that � ¼ X � X0 þ ir ¼ �x�
X0 þ ir, we obtain

bq
ffiffiffiffiffiffiffi
2�

p
N��1=2eiq�xþi�kx � e�i�kX0=�uT: (14)

Since Eq. (10) is truncated at Nth order, we conclude that
the remainder RN will contain terms proportional to
expression (14). This is fully analogous to the 1D case.
As we have seen, q and �k above are such that expiðq �
xþ �kxÞ is in fact one of the dominant Fourier modes of
the hexagonal pattern. In the end, all the appropriate sets of
q, �k, X0 and its complex conjugate �X0 give together rise
to an extra, exponentially small contribution to the pattern
given by expression (7). It is that contribution which allows
the front to be stationary over a finite range of parameters
[12,13]. Hence, its size determines the width of the pinning
range. With expression (14), we have found contributions
to the pinning range that are proportional to

e�j�k=ðX0Þj=�; (15)

where =ðX0Þ is the imaginary part of X0.
It remains to determine =ðX0Þ. We note that, in general,

a front solution can be written aðXÞ, where a is one of
the real amplitudes ai and switches monotonically from

0 to
ffiffiffiffiffiffiffiffi
2=5

p
as X goes from �1 to þ1. Hence we may in

principle invert this relation and write X ¼ XðaÞ. We are
interested in the complex limit X0 ¼ lima!1XðaÞ or, more

precisely, in its imaginary part. We know that, as a! ffiffiffiffiffiffiffiffi
2=5

p
,

we have a� ffiffiffiffiffiffiffiffi
2=5

p � p expð��XÞ, where � is the smallest

positive eigenvalue of Eq. (8) linearized around ai ¼
ffiffiffiffiffiffiffiffi
2=5

p
and p is some constant. Hence, locally, XðaÞ �
���1 lnð ffiffiffiffiffiffiffiffi

2=5
p � aÞ. By the same token, a� q expð	XÞ

near a ¼ 0 for some constants q and 	, implying the
singularity 	�1 lnðaÞ in XðaÞ. In the absence of other
singularities in the function XðaÞ, we have

XðaÞ ¼ 	�1 lnðaÞ � ��1 lnð
ffiffiffiffiffiffiffiffi
2=5

p
� aÞ þ X

n	0

bna
n: (16)

It is easy to show, by linearization of Eq. (8), that 	 and �
are real. Hence, since X is real on the real segment

0< a<
ffiffiffiffiffiffiffiffi
2=5

p
, the coefficients bn above are real too. If a

goes from 0 to 1 through real values, it must go around

the singularity at
ffiffiffiffiffiffiffiffi
2=5

p
. As it does so, XðaÞ picks up an

imaginary part given by �ð2lþ 1Þ�=�, where l is the

k 1k 2

k 3

k

3 k

7 k

FIG. 1 (color online). Top: the lattice in Fourier plane gener-
ated by the vectors ki and three directions of translation sym-
metry (dotted arrows) along which fronts can lock. Bottom: the
three corresponding fronts schematically depicted. The vertical
arrow corresponds to the smallest �k and, hence, to the widest
locking range.
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number of complete revolutions around the singularity,
and where the þ and � signs correspond to clockwise
and anticlockwise rotation, respectively. Next, on the real

interval
ffiffiffiffiffiffiffiffi
2=5

p
<<ðaÞ<1, only the real part of X further

changes, decreasing from infinity to a finite value. Hence,
lima!1=ðXðaÞÞ¼=ðX0Þ¼�ð2lþ1Þ�=�. Evaluating expr-
ession (15) with l ¼ 0, we thus obtain

��ð�Þ / e��j�kj=ð��Þ: (17)

Finally, linearizing Eq. (8) about a ¼ ffiffiffiffiffiffiffiffi
2=5

p
for all

admissible values ni, we find that 0:669< �< 0:675,
i.e., that ��1 
 1:5. Hence, the pinning range approxi-
mately scales as

��ð�Þ / e�1:5�j�kj=�; (18)

where the dependence on front orientation only appears
through �k. Note that we use a proportionality sign
(not ‘�’) as we omit an algebraic factor involving some
power of �. Expression (18) is the main result of this Letter.
It shows that fronts for which j�kj is smallest have the
largest pinning range. Considering Fig. 1, it appears that the
smallest possible value of j�kj is k and is found when the x
axis is parallel to one of the ki. In Miller’s notation, this is a

‘‘[10]’’ front [24]. The next smallest j�kj is ffiffiffi
3

p
k, and is

obtained when the x axis is perpendicular to one of the ki (a

‘‘[11]’’ front.) The third smallest value is
ffiffiffi
7

p
k, correspond-

ing to the x axis parallel to ki � 2kj, i � j; this is a ‘‘[12]’’

front. These fronts are schematically depicted in Fig. 1.
To test our theory, we solved Eqs. (1) and (2) numeri-

cally with localized initial conditions and determined the
parameter ranges in which localized patterns were stable.
The stability region so computed is expected to accurately
coincide with the pinning range if the localized patterns are
more than five peaks wide [34]. The size of the domain was
taken to be large in the x direction and exactly one period
wide in the y direction. By enforcing periodic boundary
conditions and adjusting the domain size in the y direction,
we controlled the orientation of the hexagons with respect
to the x axis [27]. We investigated the parameter space
suggested by the weakly nonlinear analysis and found
confirmation that, as � ! 0, the largest pinning range is
found for fronts with �k ¼ k, followed by those with

�k ¼ ffiffiffi
3

p
k, and then by the fronts with �k ¼ ffiffiffi

7
p

k (see
Figs. 2 and 3).

Expressions (15), (17), and (18) can be simply inter-
preted: the relevant length scale of the patterns in the x
direction is given by 4�=�k, while the length scale
associated to the front is given by 1=��. The true small
parameter of the problem is given by the ratio of the two.
The strength of the pinning between the front and the
underlying pattern is exponentially small in that parameter.
This geometrical argument and the reasoning that lead to
expression (18) do not depend on special model features.
The main assumptions of the theory are (i) separation of

spatial scales and (ii) weak nonlinearity. The latter ensures
that the solution is composed of well defined and regularly
spaced peaks in the Fourier plane. In principle, the same
argument could be carried out for square patterns and 3D
patterns. Note that the model need not be variational for the
present results to hold. Indeed, Eq. (2) does not derive from
a potential.
Systematic calculations of curves like those shown in

Figs. 2 and 3 are rare. Previous calculations have been made
for the ‘‘[10]’’ and ‘‘[11]’’ fronts in the Swift-Hohenberg
model [24]; they agree with the present results. More recent
calculations of hexagonal patches in an urban crime model
[35] also agree with the above conclusions, even though

the limit ð�; �Þ ¼ ð0;� ffiffiffiffiffiffiffiffiffiffiffi
45=2

p Þ cannot be reached with the
available control parameters of that model.
When the front is normal to one of the ki or, equiva-

lently, when it is parallel to one of the sides of the

k

3 k

7 k

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

I

C

FIG. 3. Pinning region for Eq. (2). Thick line: ‘‘[10]’’ front,
with �k ¼ k. Thin line: ‘‘[11]’’ front, with �k ¼ ffiffiffi

3
p

k. Dashed
line: ‘‘[12]’’ front, with �k ¼ ffiffiffi

7
p

k.

k

3 k

7 k

0.35 0.40 0.45 0.50 0.55 0.60 0.65

3.8

3.6

3.4

3.2

FIG. 2. Pinning region for Eq. (1)with r¼��2 and s¼ ffiffiffiffiffiffiffiffi
3=4

p
��.

Thick line: ‘‘[10]’’ front, with �k ¼ k. Thin line: ‘‘[11]’’ front,
with �k ¼ ffiffiffi

3
p

k. Dashed line: ‘‘[12]’’ front, with �k ¼ ffiffiffi
7

p
k.
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elementary hexagon, its pinning force is the strongest.
Consequently, slightly outside the pinning region, this
type of front is the more persistent and more likely to be
observed. Growth or decay in all other directions is expo-
nentially faster. Hence, evolving localized patterns just
outside the pinning range tend to have polygonal shapes
with their sides (the fronts) parallel to the sides of the
elementary hexagonal cell. This sheds new light on pre-
vious numerical simulations on chemical patterns [36],
optical patterns [37], and the Swift-Hohenberg equation
[38], as well as gaseous CO2 experiments [39].
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