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We study how the loading rate, specimen geometry, and microstructural texture select the dynamics of a

crack moving through an heterogeneous elastic material in the quasistatic approximation. We find a

transition, fully controlled by two dimensionless variables, between dynamics ruled by continuum fracture

mechanics and crackling dynamics. Selection of the latter by the loading, microstructure, and specimen

parameters is formulated in terms of scaling laws on the power spectrum of crack velocity. This analysis

defines the experimental conditions required to observe crackling in fracture. Beyond failure problems,

the results extend to a variety of situations described by models of the same universality class, e.g., the

dynamics in wetting or of domain walls in amorphous ferromagnets.
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Many systems, including ferromagnets [1], plastically
deformed metals [2], fault seismicity [3], liquid spreading
[4], and fracturing solids [5,6], crackle, i.e., respond to a
slowly varying external parameter through jerky dynamics,
with discrete pulses or avalanches spanning a variety of
scales. The salient feature of such crackling dynamics is to
exhibit universal scale-free statistics and scaling laws,
independent of both microscopic details and external con-
ditions (see Ref. [7] for a review). Those are set by generic
properties such as symmetries, dimensions, and interaction
range. This behavior, reminiscent of self-organized criti-
cality, is generally explained as being due to the presence
of a critical point and a mechanism attracting the system
toward this point [8].

In brittle failure problems, the crack front can be iden-
tified with a long-range elastic spring [9–12], and the crack
onset in heterogeneous or amorphous solids can be mapped
to a critical depinning transition [13–15]. In stable crack
growth experiments, crackling dynamics are sometimes
observed [16] and can be attributed to a self-adjustment
of the driving force around its depinning value [17]. This
model is found to reproduce the scaling laws and scale-free
statistics observed experimentally in Ref. [16]. Still, many
situations involving a variety of disordered brittle solids
(structural glasses, brittle polymers, ceramics, etc.) do not
exhibit crackling. Rather, they exhibit continuous dynam-
ics compatible with the linear elastic fracture mechanics
(LEFM) predictions.

By investigating theoretically and numerically crack
propagation in elastic disordered media, we reveal that
either LEFM-like or crackling dynamics can be observed.
A transition line is exhibited between the two regimes and
defines a phase diagram within a space defined by two
reduced variables that intimately mingle the specimen
thickness, specimen geometry, loading rate, material con-
stants (fracture energy and crack front mobility), and
microstructural texture (disorder contrast and length scale).
Within the crackling phase, the Fourier spectrum of the

crack velocity is characterized by a power law with a
universal exponent. Conversely, the prefactor and the two
cutoffs associated with this power law are found to depend
on the loading, microstructure, and specimen parameters
according to scaling laws that are uncovered herein. These
results are discussed within the framework of the depin-
ning theory [18]. They shed light on the experimental
conditions required to observe crackling in brittle fracture.
Beyond crack growth problems, they can be immediately
extended to a number of others systems described by the
same long-range string model, such as the dynamics of
contact lines in wetting [19] or that of magnetic domain
walls with dipolar interactions [20].
Theory.—In brittle failure problems, crack destabiliza-

tion and further propagation are governed by the balance
between the amount of elastic energy G released by the
solid as the crack propagates over a unit length and the
fracture energy � dissipated in the fracture process zone to
create two new fracture surfaces of unit area [21]. In
standard continuum fracture theory, G depends on the
imposed loading and specimen geometry and � is a mate-
rial constant. In the slow fracture regime, the crack velocity
v is given by v=� ¼ G� �, where (in a perfectly linear
elastic material and in the absence of any environmental
effect) the effective mobility � can be related to the
Rayleigh wave speed cR through � ¼ cR=�.
Defects and inhomogeneities at the microstructure

scale yield fluctuations in the local fracture energy:

�ðx; y; zÞ ¼ ��þ �ðx; y; zÞ, where the x̂, ŷ, and ẑ axes
are aligned with the direction of crack propagation,
tensile loading, and mean crack front, respectively. This
induces (x̂, ẑ) in-plane and (ŷ, ẑ) out-of-plane distortions
of the front which, in turn, generate local variations in G.
To the first order, variations of G depend on the in-plane
front distortion only. Thus, the problem reduces to that of
a planar crack [22,23]. One can then use Rice’s analysis
[24] to relate the local value Gðz; tÞ of energy release to
the planar front shape fðz; tÞ (see Ref. [25] for a recent
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review). Once injected in the equation of motion, this
yields [26]

1

�

@f

@t
¼ Fð �f; tÞ � ��Jðz; ffgÞ þ �ðz; x ¼ fðz; tÞÞ; (1)

where the long-range kernel J is more conveniently

defined by its z-Fourier transform ĴðqÞ ¼ �jqjf̂. Here,
Fð �f; tÞ ¼ Gð �f; tÞ � �� and Gð �f; tÞ denotes the mechanical
energy release which would result from the same loading
conditions with a straight crack front at the mean posi-
tion �fðtÞ ¼ hfðz; tÞiz. This equation is that of a long-
range elastic line driven by this force F within the frozen
random potential �ðz; xÞ. It exhibits a depinning transi-
tion at a critical value Fc, characterized by avalanche
dynamics and universal scale-free behaviors [19].

The function Gð �f; tÞ is selected by the specimen geome-
try and imposed loading. It has to be determined using
LEFM. In stable growth situations, it should increase with t
(crack loaded by imposing external displacements that
grow with t) and decreases with �f (specimen compliance
increases with f). Without loss of generality, we consider
an immobile crack at t ¼ 0 and we set the x-axis origin at

its tip [ �fðt¼0Þ¼0]. Then, one gets Gð �f ¼ 0; t ¼ 0Þ ¼ ��.
Considering the subsequent variations fðz; tÞ are small
with respect to the initial crack length, one can write

Fð �f; tÞ ¼ _Gt�G0 �f; (2)

where _G ¼ @G=@t (driving rate) and G0 ¼ �@G=@ �f
(unloading factor) are positive constants set by the imposed
displacement rate and the specimen geometry, respectively.

To complete the description, one finally has to make the
random term � precise in Eq. (1). A priori, this latter is
characterized by the probability function pð�Þ and the
spatial correlation function Cð ~rÞ ¼ h�ð ~r0 þ ~rÞ�ð~r0Þir0 . In
the following, we will consider (i) a Gaussian distribution
p of standard deviation ~� and (ii) an isotropic correlation
function C that decreases linearly with jrj over a distance ‘
(correlation length for the disorder landscape) beyond
which C ¼ 0. Note that the scaling properties are expected
to remain unaffected by changing the shapes pð�Þ and
CðjrjÞ [27]. Microstructural disorder is then fully charac-
terized by ~� and ‘.

In this framework, the front dynamics are a priori set by

seven parameters: �, ��, _G, G0, ~�, ‘, and the system size L
(specimen thickness along the z axis). By introducing the

dimensionless time t ! t=ð‘=� ��Þ and length fx; z; fg !
fx=‘; z=‘; f=‘g, one gets

@f

@t
¼ ct� k �f� Jðz; ffgÞ þ �ðz; x ¼ fðz; tÞÞ; (3)

where c ¼ _G‘=� ��2 is the dimensionless driving rate, k ¼
G0‘= �� is the dimensionless unloading factor, and � is a

Gaussian random term of standard deviation � ¼ ~�= �� and
unit spatial correlation length. As a result, the front

dynamics are selected by only four independent parame-
ters: c, k, �, and the scale ratio N ¼ L=‘.
Numerics.—Using a fourth order Runge-Kutta scheme,

we solved Eq. (3) for a front fðz; tÞ propagating in an N �
pN uncorrelated random Gaussian map �ðz; xÞ with zero
average and � variance [p sets the (x̂, ẑ) aspect ratio]. The
parameter c was varied from 10�6 (imposed by the time
limit of 40 days on a 2 GHz CPU we impose for each
simulation) to 10�4 (to keep a large enough scale separa-
tion between the depinned front velocity and the loading
rate). The parameters k, �, and N were respectively varied
from 10�8 to 1, 10�1 to 4, and 32 to 2048. This permits a
wide exploration of the phase diagram (eight decades in the
relevant units; see Fig. 2 and the associated text).
Results.—The left panel of Fig. 1, showing A1, A2, and

A3, presents typical time profiles of the spatially averaged
crack velocity �vðtÞ ¼ d �f=dt for constant c and increasing
k. At low k, �vðtÞ fluctuates over the mean value c=k that
would have been expected from continuum mechanics
(CM), i.e., for � ¼ � � 0. When k increases, the signal
becomes more jerky and, above a given value, exhibits
crackling dynamics, with distinct pulses separated by silent
periods where �v ¼ 0. The transition kc between these two
regimes can be computed by plotting the minimum value
of �vðtÞ as a function of k (right panel of Fig. 1). vmin is
equal to zero in the crackling regime and increases with k
in the CM-like regime, above kc.
In the inset of Fig. 2(a), we plot kc vs c as measured

in systems of fixed p ¼ 3 and various N and �.
A c-independent plateau kc sat is observed at low c, low
N, and large � while kc increases linearly (slope A) with c
at high c, high N, and low �. All curves can then be
superimposed by making kc ! k�c ¼ kc=kc sat and c !
c� ¼ Ac=kc sat. Both A and kc sat are found to go as a power
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FIG. 1 (color online). Left panel: Time evolution of the spa-
tially averaged crack front velocity �vðtÞ for increasing unloading
factor k: k ¼ 4:75� 10�5 (A1), k ¼ 2� 10�4 (A2), and k ¼
5:5� 10�3 (A3). Other parameters are kept as constants: c ¼
10�5, N ¼ 1024, and � ¼ 1. At low k, �vðtÞ wanders around the
value c=k expected in the absence of microstructural disorder,
with relative fluctuations that decrease with k. For higher k, the
dynamics become jerky and, above a given value kc, separated
pulses can be distinguished, which sharpen as k increases. Right
panel: Minimum value of �vðtÞ vs k. The transition value kc
between CM-like and crackling dynamics is precisely defined as
the smallest value k for which vmin ¼ 0.
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law with N and �: A � ���1N�2 with �1 ¼ 1:15� 0:05
and �2 ¼ 0:38� 0:05, and kc sat � �N��3 with �3 ¼
1:65� 0:05. The resulting master function, plotted in
Fig. 2(a) (main), is

k�c ¼ fðc�Þ; fðc�Þ �
�
k�c sat if c� � k�c sat
c� if c� � k�c sat;

(4)

where c� ¼ c� N�2þ�3=�1þ�1 and k�c ¼ kc=�N
��3 . The

plateau value k�c sat is found to decrease with p. This curve
separates CM-like and crackling dynamics.

The form of the kc vs c curves can be understood
by analyzing the profile �effðxÞ ¼ hJðz; ffgÞ þ �½z; x ¼
fðz; tÞ	iz of the effective pinning force applying on the
front as it propagates throughout the disordered landscape.
Such a profile is depicted in Fig. 2(b). The value kc sat
observed for c ! 0 is set by the relative positions of the
maximum and the following next-to-maximum peaks over
the traveled distance [S1 ¼ fx1; �1g and S2 ¼ fx2; �2g in
Fig. 2(b)]: kc sat ¼ ð�1 � �2Þ=ðx2 � x1Þ. At finite c, the
front earns an extra driving force during its depinning
jump (duration �12) from S1 to S2, yielding kc ¼ kc sat þ
Ac with A ¼ �12=ðx2 � x1Þ. One thus expects kc � kc sat
for c � kc sat=A and kc � Ac for c � kc sat=A. The linear
variation of f�effg with � explains the observed kc sat / �.

Note that in this scenario, the jerky dynamics observed for
c � kc sat=A are dominated by a single large avalanche
(from S1 to S2), while true steady self-sustained crackling
dynamics can only be observed for c � kc sat=A.
We now focus on the evolution of the fracturing dynam-

ics �vðtÞ within the steady regimes of the phase diagram.
One way to characterize it is to analyze its power spectrum
(PS). Such an analysis, indeed, has two advantages with
respect to the standard statistical analysis of pulse size and
duration developed to analyze crackling signals [28]: (i) it
allows a full exploration of the phase diagram (both crack-
ling and CM-like), and (ii) in the crackling part, it does not
call for any additional criteria (threshold setting) to filter
single pulses in the presence of overlapping avalanches.
Figure 3 presents the evolution of PSð�Þ for increasing k
and the other parameters constant. Below kc, all curves
overlap except at the lowest frequencies. This is precisely
what is requested in a CM description, where the
continuum-level scale control parameter k should affect
the system at large scales only. Conversely, above kc, the
PS curves are distinct, showing that all scales are affected
by k. One points out the power law behavior characteristic
of crackling dynamics [28–30]. The power law exponent
1=a is independent of k, whereas the prefactor decreases
with k. The dramatic change observed as k crosses kc is a
signature that the CM-crackling transition line is a true
transition, not a crossover phenomenon.
We turn now to the quantitative selection of the PS in the

crackling regime. The curve collapse presented in Fig. 4(a)
unravels the scaling between the power law prefactor and
the series of variables c, k, and N: Over the range �min 

� 
 �max, PSð�Þ is

PS � �2�

N

c

k
��1=a: (5)

The upper cutoff is found to depend on � only [Fig. 4(b),
inset],while the lower onedependsonk only [Fig. 4(b),main]:10
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FIG. 2 (color online). (a) Phase diagram of the crack dynam-
ics. Inset: Variation of kc as a function of c for different N and �
(values on the right-hand side). Each point results from averag-
ing over many simulations, and the error bars correspond to a
95% confidence interval. Main panel: Collapse obtained using
Eq. (4) with �1 ¼ 0:38, �2 ¼ 1:15, and �3 ¼ 1:65. The straight
line indicates proportionality. In both graphs, the axes are
logarithmic. (b) Sketch of the variation of the effective pinning
force applying on the front as it quasistatically propagates
throughout the disordered landscape (see, e.g., Ref. [35] for
implementation of such a propagation algorithm). Points S1 ¼
fx1; �1g and S2 ¼ fx2; �2g locate the maximum and following
next-to-maximum peaks over the traveled distance (see the text
for details).
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FIG. 3 (color online). PS of �vðtÞ obtained for various values of
k (logarithmic axes). Other parameters are kept constant: c ¼
10�5, N ¼ 1024, and � ¼ 1. The colorbar on the right indicates
the k value. Note the qualitative change at the transition kc and
the power law observed above in the crackling regime.
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�max � �2�; �min � k�: (6)

In Eqs. (5) and (6), the fitted exponents were found to be
1=a ’ 1:50� 0:02, � ’ 0:7� 0:1, and � ’ 0:52� 0:08.

Discussion.—The crackling pulses evidenced in the �vðtÞ
signal result from the depinning avalanches. Single, non-
overlapping avalanches are known to exhibit universal
scale-free distributions and scaling relations characterized
by a variety of critical exponents, which can be estimated
using renormalization group [18,19] or numerical [31,32]
methods. These scale-free features only hold for length
scales larger than the Larkin length [33] Lc, which, for our
model, scales as Lc � 1=�2. We then expect �max �
1=L�

c � �2�, where � ¼ 0:770ð5Þ [32] refers to the dy-
namic exponent. This value is in agreement with that
measured here. In the so-called adiabatic limit (c ! 0),
there is a one-to-one relation between the �vðtÞ pulses and
the single depinning avalanches. Then, the PS exponent aad
in Eq. (5) (here, the ‘‘ad’’ index stands for ‘‘adiabatic
limit’’) is expected [29] to be the one that defines the
scaling T / Saad between the avalanche size S and duration
T: aad ¼ �=ð1þ 	Þ [5], where 	 ¼ 0:385ð5Þ [31,32] refers
to the roughness exponent. As a result, one expects
1=aad ¼ 1:80ð2Þ. The exponent �ad in Eq. (6) defines the
scaling between the upper cutoff in time for scale-free
features and the unloading factor k. In our model, it is
given by �ad ¼ �=2 [5], which yields �ad ¼ 0:385ð5Þ.
Both �ad and 1=aad are found to be significantly different

from the values � and a measured herein. By yielding
some overlap between the avalanches, a finite driving rate
c, indeed, is expected [34] to alter the PS shape and the
cutoff dependencies. It is interesting to note that the effect
is limited to a novel value set for a and �, without mod-
ifying the power law shape for PS or yielding an additional
dependency with c for �min. By yielding percolation
throughout the space-time diagram as c increases and/or
k decreases, the overlap effect is also believed to drive the
crackling-CM transition. Ongoing work aims at accurately
characterizing this coalescence process. This will allow
unraveling the selection of a and � in Eq. (5) and that of
�i in Eq. (4).
To summarize, we have analyzed here how a brittle

crack selects its propagation dynamics in the presence of
microstructural disorder. Large disorder (contrast or length
scale), large unloading factor, small specimen size, and
small driving rate yield crackling dynamics, while the
opposite yields CM-like dynamics. The associated phase
diagram is unraveled and is shown to be fully controlled by
two reduced variables [Fig. 2 and Eq. (4)] that intimately
mingle the above parameters. Relations between these
parameters and the dynamics in the crackling phase (the
Fourier spectrum of the crack velocity) have finally been
determined [Eqs. (5) and (6)].
This work sheds light on the experimental conditions

required to observe crackling in brittle fracture. It also
provides insights on how to decipher the crackling dynam-
ics and gain information on the underlying conditions, e.g.,
in terms of microstructure or loading when those are not
a priori known. These results can also inform technologi-
cal relevant fracture processes, e.g., in the future develop-
ment of rationalized design methodologies to prevent (or to
limit) inopportune crackling (and induced indetermina-
tion) in cutting technologies. Beyond solid failure, our
analysis directly extends to a number of other systems
described by the same long-range string model, such as
the dynamics of contact lines in wetting problems [19] and
the dynamics of domain walls in ferromagnets [20] (the
field sweep rate and the demagnetization factor then play-
ing the roles of c and k). As such, it may be relevant to
other fields facing similar problems, e.g., nanofluidic or
nanomagnetism technologies.
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