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We consider how nonlinear interaction effects can manifest themselves and even be enhanced in a

strongly driven optomechanical system. Using a Keldysh Green’s function approach, we calculate

modifications to the cavity density of states due to both linear and nonlinear optomechanical interactions,

showing that strong modifications can arise even for a weak nonlinear interaction. We show how this

quantity can be directly probed in an optomechanically induced transparency-type experiment. We also

show how the enhanced interaction can lead to nonclassical behavior, as evidenced by the behavior of g2
correlation functions.
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Introduction.—The field of cavity optomechanics
involves understanding and exploiting the quantum inter-
action between a mechanical resonator and photons in a
driven electromagnetic cavity. It holds immense promise
for both fundamental studies of large-scale quantum phe-
nomena as well as applications to quantum information
processing and ultrasensitive detection, and has seen
remarkable progress in the past five years. Highlights
include the use of radiation pressure forces to cool a
mechanical resonator to close to its motional ground state
[1,2] and experiments where the mechanical motion causes
squeezing of the light leaving the cavity [3,4].

As remarkable as this progress has been, it has relied on
strongly driving the optomechanical cavity to enhance the
basic dispersive coupling between photons and mechanical
position. While the resulting interaction can be made larger
than even the dissipative rates in the system [5–7], it is
purely bilinear in photon and phonon operators. As a result,
it cannot convert Gaussian state inputs into nonclassical
states or give rise to true photon-photon interactions.
Recent theoretical work has addressed the physics of the
nonlinear interaction in weakly driven systems [8,9].
Unfortunately, one finds that the effects are suppressed
by the small parameter g=!M.

In this Letter, we now consider nonlinear interaction
effects in an optomechanical system that (unlike
Refs. [8,9]) is also subject to a strong laser drive; we
consider the effects of this driving beyond simple linear
response. We find somewhat surprisingly that one can use
the strong drive to enhance the underlying single-photon
interaction. Using nonequilibrium many-body perturbation
theory [based on the Keldysh technique (see, e.g.,
Ref. [10])], we calculate how these effects modify the
cavity density of states and hence the cavity’s response to
an additional weak probe laser. This response is exactly
the quantity measured in so-called optomechanically in-
duced transparency (OMIT) experiments [6,11–13]. We
find striking modifications of the OMIT spectrum, effects

which can be attributed to the nonlinear interaction causing
a hybridization between one and two polariton states (with
the polaritons being joint mechanical-photonic excita-
tions). We also find the possibility of enhanced polariton-
polariton interactions, which lead in turn to nonclassical
correlations (as measured by a g2 correlation function).
System.—The standard Hamiltonian of a driven optome-

chanical cavity is Ĥ ¼ Ĥ0 þ Ĥdiss, with (@ ¼ 1)

Ĥ0 ¼ !Câ
yâþ!Mb̂

yb̂þ gðb̂y þ b̂Þâyâ
þ ½ ffiffiffiffi

�
p

�ainðtÞây þ H:c:�: (1)

Here, â is the cavity mode (frequency!C, damping rate �),

b̂ is the mechanical mode (frequency!M, damping rate �),

and g is the optomechanical coupling. Ĥdiss describes the
dissipation of photons and phonons by independent baths;
�ainðtÞ is the amplitude of the drive laser.
We consider the standard case of a continuous-wave

drive [i.e., �ainðtÞ / e�i!Lt] and work in a rotating frame
at the laser frequency !L. We further make a displacement

transformation, writing â ¼ e�i!Ltð �aþ d̂Þ, where �a is the
classical cavity amplitude induced by the laser drive.
Letting � ¼ !L �!C, the coherent Hamiltonian now

takes the form Ĥ1 þ Ĥ2 with

Ĥ 1 ¼ ��d̂yd̂þ!Mb̂
yb̂þGðd̂þ d̂yÞðb̂þ b̂yÞ; (2)

Ĥ 2 ¼ gd̂yd̂ðb̂þ b̂yÞ: (3)

G ¼ g �a is the drive-enhanced many-photon optomechan-
ical coupling; we set g, �a > 0 without loss of generality.
The most studied regime of optomechanics is where

�a � 1 and g � �, !M. It is then standard to neglect the

effects of Ĥ2. In the absence of any driving, a simple

perturbative estimate suggests that the effects of Ĥ2 enter
as g2=!M, where the factor of !M corresponds to a virtual
state with one extra (or one less) phonon. This conclusion
can be made more precise by exactly solving the coherent,
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undriven system using a polaron transformation [8,9].

Thus, in this standard regime, one can ignore Ĥ2, leaving

only Ĥ1, which is easily diagonalized as Ĥ1 ¼P
�¼�E�ĉ

y
�ĉ�. Here, ĉþ;� describe the two normal modes

of the system. As these modes have both photon and
phonon components, we refer to them as polaritons in
what follows. Their energies are

E� ¼ 1ffiffiffi
2

p �2 þ!2
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 �!2

MÞ2 � 16G2�!M

q� �
1=2

:

(4)

For� ’ �!M andG � �, �, the polariton energy splitting
can be resolved experimentally [5–7].

Polariton interactions.—Unlike previous work, we wish

to retain the effects of the nonlinear interaction Ĥ2 but also
consider the effects of a large drive (and hence a large
many-photon coupling G). To proceed, we will treat the

effects of Ĥ2 in perturbation theory. We use a Keldysh
Green’s function (GF) approach which is able to describe
the nonequilibrium nature of the system. The linear

Hamiltonian Ĥ1 along with the dissipative terms in Ĥdiss

define the free GFs of the system, which describe the
propagation of polaritons in the presence of dissipation.

Written in the polariton basis, the nonlinear interaction Ĥ2

gives rise to number-nonconserving interactions

Ĥ 2 ¼
X

�;�0;�00
ðgA��0�00 ĉ

y
�ĉ

y
�0 ĉ

y
�00 þ gB��0�00 ĉ

y
�ĉ

y
�0 ĉ�00 þ H:c:Þ;

(5)

where the coefficients gA=B
��0�00 / g [14]. Note normal

ordering Ĥ2 in terms of polariton operators introduces
small quadratic and linear terms which modify the diago-

nalized form of Ĥ1 (see the Supplemental Material for
details [14]).

We start by considering how single-particle properties
are modified by the nonlinear interactions; such properties
can be directly probed by weakly driving the cavity with
a second probe laser (i.e., an OMIT experiment [11–13])
or by measuring the mechanical force susceptibility.
Understanding these properties amounts to calculating

the self-energy �½!� of both the polaritons due to Ĥ2.
We have calculated all self-energy processes to second
order in g. Our approach captures both the modification
of spectral properties due to the interaction (i.e., the modi-
fication of the cavity and mechanical density of states), as
well as modifications of the occupancies of the mechanics
and cavity. While our approach is general, we will focus
on the most interesting case of a high mechanical quality
factor � � !M, a cavity in the resolved sideband regime
!M > �, and a strong cavity drive G * �.

Our full second-order self-energy calculation finds that
for most choices of parameters, the polariton self-energies
scale as g2=!M and thus have a negligible effect for the
typical case where g � !M. However, effects are much

more pronounced if one adjusts parameters so that

Eþ ¼ 2E�. This condition makes the term in Ĥ2 which
scatters a þ polariton into two � polaritons (and vice
versa) resonant. It can be achieved for any laser detuning
� in the range (� 2!M, �!M=2) by tuning the amplitude
�ain of the driving laser so that the many-photon optome-
chanical coupling G ¼ Gres, where [15]

Gres½�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17�2!2

M � 4ð!4
M þ �4Þ

q
=ð10 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��!M

p Þ: (6)

In this regime, the dominant physics is well described by

the approximation Ĥ0 ’ Ĥeff with

Ĥ eff ¼
X
�¼�

E�ĉ
y
�ĉ� þ ~gðĉyþĉ�ĉ� þ H:c:Þ þ ĤNR; (7)

Ĥ NR ¼ X
�¼�

�
��ĉ

y
�ĉ� þ X

�0¼�
U��0 ĉy�ĉy�0 ĉ�0 ĉ�

�
: (8)

The second term in Ĥeff corresponds to making a rotating-
wave approximation on the nonlinear interaction

Ĥ2 in Eq. (5), retaining only the resonant process;
~g ¼ gB��þ / g is the corresponding interaction strength

[Fig. 2(a) shows how ~g varies with �]. The terms in ĤNR

describe the small (i.e., / g2=!M) residual effects of
the nonresonant interaction terms in Eq. (5); we treat
them via straightforward second-order perturbation theory
(i.e., a Schrieffer-Wolff transformation). They play no role
in the extreme good-cavity limit !M � � [14].
Green’s functions for resonant nonlinear interactions.—

Focusing on the resonant interaction regime defined by
Eq. (6) and using the simplified Hamiltonian in Eq. (7),
we obtain simple expressions for the retarded GFs of the
system. The retarded photon GF in the displaced, rotating
frame is defined as

GR
dd½!� ¼ �i

Z 1

�1
dt�ðtÞh½d̂ðtÞ; d̂yð0Þ�iei!t; (9)

with similar definitions for the polariton retarded GF
GR

��½!� (� ¼ �). As usual, �d½!� ¼ �ImGR
dd½!�=�

describes the cavity density of states; GR
dd½!� also deter-

mines the reflection coefficient in an OMIT experiment
(see Fig. 2). A standard linear response calculation [14]
shows that the elastic OMIT reflection coefficient is given
by r½!pr� ¼ 1� i�cpG

R
dd½!pr�, where !pr is the frequency

of the weak probe beam and �cp is the contribution to the

total cavity � from the coupling to the drive port.
In the limit of interest where � � E�, there are no off-

diagonal polariton GFs or self-energies [14]. As a result,
GR

dd½!� will be given as GR
dd½!� ¼ P

�ðC�G
R
��½!� þ

D�fGR
��½�!�g�Þ, where the change-of-basis coefficients

C� and D� are given in Ref. [14]. The Dyson equations
for the polariton retarded GFs are

GR
��½!� ¼ ð!� E� þ i��=2��R

��½!�Þ�1; (10)
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where �� is the effective damping rate of the � polariton
[14]. Using the effective Hamiltonian in Eq. (7), a standard
Keldysh calculation yields that to second order in g, the
polariton self-energies take the simple forms

�Rþþ½!� ¼ 2~g2ð1þ 2 �n�Þ
!� 2E� þ i��

; (11a)

�R��½!� ¼ 4~g2ð �n� � �nþÞ
!� ðEþ � E�Þ þ ið�þ þ ��Þ=2 : (11b)

Here, �n� is the effective thermal occupancy of the �

polariton [14]; for ~g ¼ 0, we have hĉy�ĉ�i ¼ �n�. We
have taken the limit g=!M ! 0 and hence neglected the

effects of the nonresonant terms ĤNR in Eqs. (11);
the explicit corrections due to these terms are given in
the Supplemental Material [14].

Equations (11) are central results of this work.
Equation (11a) describes the fact that a single þ polariton
can resonantly turn into two� polaritons and describes the
hybridization between these states that occurs for large
enough g. To see this explicitly, we consider the case of
exact resonance (i.e., Eþ ¼ 2E�) and write

GRþ½!� ¼ 1

2

X
�¼�

1� i� 2����þ
4�þ

!� Eþ þ i 2��þ�þ
4 þ ��þ

; (12)

�þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~g2ð1þ 2 �n�Þ � ð2�� � �þÞ2=16

q
: (13)

For ~g * �, we see that the þ polariton GF has two poles,
corresponding to the new hybridized eigenstates. We stress
that these eigenstates do not correspond to a fixed excita-
tion number. Note that unlike the undriven system [8,9],
the effects of the nonlinear interaction can be significant
even if g � !M. Also note that the resonant coupling
between jþi and j� �i states is enhanced at finite
temperature by a standard stimulated emission factor
(1þ 2 �n�). The form of this GF and self-energy are remi-
niscent to the photon GF for ordinary OMIT, where a
photon can resonantly turn into a phonon [11]; however,
that effect does not involve any temperature-dependent
enhancement. ��� in Eq. (11b) describes a process where
the propagating � polariton of interest interacts with
an already present � polariton to turn into a þ. As this
process requires an existing density of polaritons, it is
strongly suppressed at low temperatures.

We note that it is possible to use resonance to enhance
the nonlinear optomechanical interaction without strong
driving, if one instead considers a system where two cavity
modes interact with a single mechanical resonator [16–18];
see also Ref. [19] for an alternate scheme based on two
cavity modes. Our approach has the benefit of only requir-
ing a single cavity mode; further, for drive detunings near
� ¼ �!M, it also has a natural resistance against
mechanical heating, as mechanical contribution to the
polariton temperature scales as � �nth=�, where �nth is the

mechanical thermal occupancy. While a low temperature is
not essential for the density-of-states effects described
above, it is essential for the correlation effects discussed
below. Finally, for superconducting microwave cavities,
the cavity linewidth � has a strong contribution from
two-level fluctuators and thus improves if one strongly
drives the cavity (as in our scheme).
Red-sideband drive.—For a detuning � ¼ �!M, the

polariton resonance occurs when G ¼ 0:3!M. For this
detuning, both polaritons are almost equal mixtures of
photon and phonon operators. One finds �� ¼ ð�þ �Þ=2
and that the resonant interaction strength ~g ’ �0:37g.

Because Ĥ1 does not conserve the number of photons

and phonons, the polaritons are not eigenstates of d̂yd̂þ
b̂yb̂; as a result, even at zero temperature, the effective
thermal occupancies scale as �n� / ðG=!MÞ2 � 1 [14].
The inset of Fig. 1 shows the evolution of the cavity density
of states for these parameters as g is increased from zero.
For g ¼ 0, one sees two symmetric peaks corresponding to
the two polaritons, i.e., the well-known normal-mode split-
ting [20,21]. As g increases, these peaks develop a marked
asymmetry. For g	 �, a clear splitting of the þ peak
occurs, corresponding to the resonant hybridization of
one and two polariton states. Figure 1 also shows the
results of a numerical (but nonperturbative) master-
equation simulation [14], showing our analytic approach
is reliable even for moderately strong g.
Large-detuned drives.—The resonant-polariton interac-

tion is also interesting for drives far from the red sideband,
where the value of Gres � !M. For a laser detuning
near the minimum possible value � ¼ �2!M at which

FIG. 1 (color online). Main: þ polariton resonance in the
cavity density of states, for various values of the nonlinear
interaction strength g (as indicated), as obtained from Eq. (12)
(with the inclusion of energy shifts from ĤNR [14]). For all plots,
the laser drive is at the red sideband � ¼ �!M, and G ¼ 0:3!M

to ensure the resonance condition Eþ ¼ 2E�; we also take
!M=� ¼ 50, T ¼ 0, and � ¼ 10�4�. The peak splitting signals
the hybridization of a þ polariton with two � polaritons. The
dashed curve is the result of a master-equation simulation for
g ¼ � [14]. Inset: Full density of states, same parameters,
showing the asymmetry between þ and � polariton resonances.
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resonance is possible (and settingG ¼ Gres), the polaritons
are each either almost entirely phonon or photon,
implying a very small value of ~g / gG=!M. However, as
the � polariton is now almost purely phononic, its small
damping rate and potentially large thermal occupancy
enhance the self-energy in Eq. (11a). We can quantify these
effects by considering the value of �d½! ¼ Eþ�, which
will be suppressed by the hybridization physics described
here. One finds in general that

�d½Eþ�¼2=�

�þ
1

1þCeff

; Ceff¼4~g2ð1þ2 �n�Þ
�þ��

: (14)

For a detuning �	�2!M, �� ’ �þ ð8=9ÞG2�=!2
M,

where the second term is the effective optical damping.
As a result, Ceff / ðg=�Þ2ð1þ 2 �n�Þ. Even when Ceff � 1,
the small density-of-states suppression is extremely sharp
in frequency (with a width �� � �), leading to an observ-
able feature. Further, the feature can be strongly enhanced
by simply increasing the mechanical temperature.

Figure 2 shows the reflection coefficient jr½!pr�j2 that

would be measured in a standard OMIT experiment for
both the case of a control laser detuning near �!M

[Fig. 2(c)] and near �2!M [Fig. 2(d)]. As discussed, the
!pr dependence of r reflects the structure in the cavity

density of states. The dashed curves in each panel are the
predictions of the usual linearized optomechanical
Hamiltonian (i.e., g ¼ 0, G � 0). For g	 �, one sees a
clear splitting of the reflection dip associated with the þ
polariton resonance. In contrast, for g � �, one can
still see effects of the nonlinear interaction by taking

�	�2!M, as one obtains an extremely narrow feature
in r½!pr�. As an OMIT experiment involves measuring

average reflected power (as opposed to fluctuations),
such small, sharp features can be resolved. The value
of g=� ¼ 0:01 used in Fig. 2(d) is comparable to the
value 0.007 achieved in Ref. [22]; even larger values
of g=� have been realized in cold-atom experiments
(e.g., Ref. [23]).
Induced Kerr interaction.—The nonlinear interaction

in the resonant regime defined by Eqs. (6) and (7) leads
to a strongly enhanced two-particle interaction between �
polaritons, mediated by the exchange of a þ polariton
(Fig. 3). In a weakly driven optomechanical system,
Eq. (3) implies that phonons can mediate an effective
photon-photon interaction; however, as the virtual phonon
is off resonance, this interaction U / g2=!M. In contrast,
the resonance condition Eþ ¼ 2E� yields an induced
interaction Ures / ~g2=�, an enhancement by a large
factor / !M=�.
To assess the effects of the polariton-polariton interac-

tions, we weakly drive our system with a second probe
tone and consider the g2 correlation functions g2u ¼
hûyûyû ûi=hûyûi2, where u ¼ b, d, cþ, c�. g2u is a mea-
sure of interaction induced correlations; g2 
 1 signifies
nonclassical correlation. Given the strong interaction expe-
rienced by � polaritons when the resonance condition
Eþ ¼ 2E� is achieved, we expect that if the cavity is
driven at the E� resonance, g2� will drop below 1. This
is indeed the result of a numerical, master-equation-based
calculation (see Fig. 3 and Ref. [14]). An analytic calcu-
lation based on a reduced state space (similar to that in
Ref. [18]) reproduces these results. For a weak probe drive
at the E� frequency, it yields [14](a)

(c) (d)

(b)

FIG. 2 (color online). (a) Behavior of ~g, Gres, and Ceff as a
function of detuning � of the main laser drive. (b) Schematic of
OMIT experiment, where a weak probe beam at a frequency !pr

(defined in the lab frame) is reflected from the cavity. (c) OMIT
reflection coefficient, with �, g given, G ¼ Gres½��, �cp=� ¼
0:25, and the remaining parameters identical to Fig. 1. The
dashed curve is the prediction of the linearized theory (g ¼ 0,
G � 0). (d) Same as (c) but with a larger control laser detuning
� ’ �2!M. In this regime, the effect of even a small g � � can
be resolved as it yields a very sharp feature.

FIG. 3 (color online). Inset: Resonant interaction between �
polaritons. Main: Numerically calculated g2 correlation function
for � polaritons (g2�) and phonons (g2b), in the presence of an
additional weak probe laser (frequency !pr). Here, g ¼ �, � ¼
�!M, and G ¼ 0:3!M ¼ Gres. We have taken !M=� ! 1 to
suppress nonresonant interaction effects. The probe amplitude is
	 ¼ 0:2� (g2�) and 	 ¼ 0:3� (g2b). Both phonon and polariton
g2 functions drop below 1 due to the interactions, indicating
nonclassical correlations despite the fact g=!M ’ 0. The dashed
curve is the result of an analytic theory (see Ref. [14]).
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g2� ¼ 1

1þ 4~g2=�2�
: (15)

One also finds nonclassical correlations for photons and
phonons. Shown in Fig. 3 is the phonon g2 function g2b
(for the same parameters); it clearly drops below 1. The
double-peak structure of this curve is the result of the drive
inducing correlations between � and þ polaritons; it also

occurs in the behavior of hb̂yb̂i (see the Supplemental
Material for more details [14]).

Conclusions.—We have presented a systematic
approach for describing nonlinear interaction effects in a
driven optomechanical system, identifying a regime where
a resonance enhances interactions between polaritons. We
have discussed how this would manifest itself in a OMIT-
style experiment, as well as in g2 correlation functions. The
polariton interactions we describe could be extremely
interesting when now considered in lattice systems or
when considering the propagation of pulses.

We thank W. Chen and A. Nunnenkamp for useful dis-
cussions. This work was supported by CIFAR, NSERC, and
the DARPAORCHID program under a grant from AFOSR.

Note added.—Recently, we became aware of a related
work by Børkje et al. [24].
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A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter,
Nature (London) 478, 89 (2011).

[3] D.W.C. Brooks, T. Botter, S. Schreppler, T. P. Purdy,
N. Brahms, and D.M. Stamper-Kurn, Nature (London)
488, 476 (2012).

[4] A. H. Safavi-Naeini, S. Groeblacher, J. T. Hill, J. Chan,
M. Aspelmeyer, and O. Painter, arXiv:1302.6179.

[5] S. Groeblacher, K. Hammerer, M. R. Vanner, and M.
Aspelmeyer, Nature (London) 460, 724 (2009).

[6] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois,
J. D. Whittaker, and R.W. Simmonds, Nature (London)
471, 204 (2011).

[7] E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and
T. Kippenberg, Nature (London) 482, 63 (2012).

[8] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
[9] A. Nunnenkamp, K. Børkje, and S.M. Girvin, Phys. Rev.

Lett. 107, 063602 (2011).
[10] A. Kamenev and A. Levchenko, Adv. Phys. 58, 197

(2009).
[11] G. S. Agarwal and S. Huang, Phys. Rev. A 81, 041803(R)

(2010).
[12] S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet,

A. Schliesser, and T. Kippenberg, Science 330, 1520
(2010).

[13] A. H. Safavi-Naeini, T. P.M. Alegre, J. Chan, M.
Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang,
and O. Painter, Nature (London) 472, 69 (2011).

[14] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.053602 for
additional information on the normal-mode
transformation, the self-energy calculation, the
numerical master-equation simulation, and the
calculation of g2 correlation functions.

[15] Note that when the resonance condition Eþ ¼ 2E� is
satisfied (i.e., G ¼ Gres½��), the linear optomechanical
system is always stable, as can be confirmed by applying
the standard Routh-Hurwitz stability conditions.

[16] M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F.
Marquardt, Phys. Rev. Lett. 109, 063601 (2012).

[17] K. Stannigel, P. Komar, S. J.M. Habraken, S. D. Bennett,
M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109,
013603 (2012).

[18] P. Komar, S. D. Bennett, K. Stannigel, S. J.M. Habraken,
P. Rabl, P. Zoller, and M.D. Lukin, arXiv:1210.4039v1.
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