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We study the collective modes in relativistic electromagnetic or quark-gluon plasmas with an

asymmetry between left- and right-handed chiral fermions, based on the recently formulated kinetic

theory with Berry curvature corrections. We find that there exists an unstable mode, signaling the presence

of a plasma instability. We argue the fate of this ‘‘chiral plasma instability’’ including the effect of

collisions, and briefly discuss its relevance in heavy ion collisions and compact stars.
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Introduction.—Parity violating effects related to quan-
tum anomalies play an important role in a wide range of
physics from quantum Hall systems to cosmology. One
example in the transport phenomena is the parity violating
current in the presence of a magnetic field and an asym-
metry between left and right-handed fermions, parame-
trized by the chiral chemical potential �5 � �R ��L.
This is called the chiral magnetic effect (CME) [1–5].
Recently, hydrodynamics [6] and kinetic theory [7–11]
have been appropriately modified to describe quantum
anomalies and the CME (see also Refs. [12,13]); in the
kinetic theory, essential corrections are the Berry curva-
ture, the concept diversely applied in condensed matter
physics [14,15]. These developments enable us to system-
atically understand the properties and dynamical evolution
of various systems with hitherto neglected anomalous
effects.

In this Letter, we study the collective modes and their
consequences in relativistic electromagnetic or quark-
gluon plasmas (QGP) at finite �5 [16] and temperature T
based on the new kinetic theory. (For a review on the
collective modes without Berry curvature corrections, see
Ref. [18].) We show that the Berry curvature corrections
dramatically modify the dispersion relation of the collec-
tive modes, and in particular, lead to unstable modes,
signaling the presence of a plasma instability. We shall
call it the chiral plasma instability. Closely related insta-
bility was studied within the electroweak theory at large
lepton chemical potential [19,20] and in the context of the
early Universe at T � �5 [21–23] where it is ascribed to a
possible origin of the primordial magnetic field.

Our main purpose of this Letter is to reveal the potential
importance of the chiral plasma instabilities in heavy ion
collisions and compact stars. It has been argued that the
QGP created in noncentral heavy ion collisions may con-
tain locally finite �5 for quarks and a large external

magnetic field to yield an observable CME [5,17,24]. It
was also suggested that a degenerate electromagnetic
plasma with finite �5 for electrons may exist inside neu-
tron stars due to the parity violating weak process, where
the CME is generated in a strong magnetic field [25]. We
show within the kinetic theory that these QCD and
QED plasmas at finite �5 are dynamically unstable and
reduce�5 by converting it to (color) electromagnetic fields
with magnetic helicity. We estimate the typical time
scales of the chiral plasma instabilities for the QCD and
QED plasmas as �QCD�1=ð�2

s�5ln�
�1
s Þ for �5�T and

�QED � 1=ð�2�5Þ, respectively.
Kinetic theory with parity violating effects.—Let us

describe a chiral plasma within the kinetic framework.
We first consider the collisionless kinetic theory and we
shall argue the effect of collisions later. We also consider
the regime of a sufficiently weak gauge field A�, where
there is no essential difference between Abelian and
non-Abelian gauge fields, up to color and flavor degrees
of freedom [26,27]. For simplicity of notation, we first
consider QED, and we will generalize it to QCD later
(with some modifications mentioned below). We assume
massless quarks and spatially homogeneous �5 below.
Recall the Maxwell equation

@�F
�� ¼ j�ind þ j�ext; (1)

where j
�
ind is the induced current and j

�
ext is the external

current. For the small gauge field A�, the induced current
can be expressed, via the linear response theory, as

j�indðKÞ ¼ ���ðKÞA�ðKÞ; (2)

in the momentum space, where ��� is the (retarded)
self-energy and K� ¼ ð!;kÞ is the four-momentum.
From Eqs. (1) and (2), we obtain

½K2g�� � K�K� þ���ðKÞ�A�ðKÞ ¼ �j
�
ext: (3)
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Because of the gauge invariance, which allows us to shift
A� ! A� þ K�, we can choose the temporal gauge A0 ¼ 0.
Then Eq. (3) can be rewritten, using the electric field, as

½��1�ijEj�½ðk2�!2Þ�ij�kikjþ�ij�Ej¼�i!jiext; (4)

where k � jkj. The dispersion relation for the collective
modes in the system can be found by computing the poles
of �ij; a mode with the dispersion relation ! ¼ !ðkÞ
satisfying Imð!Þ> 0, if exists, implies an instability.

The explicit form of ��� including the parity violating
effects can be found by using the kinetic theory with Berry
curvature corrections [7,9,10]. To illustrate the point and
for simplicity, we take the initial equilibrium distribution
function n0p to be isotropic (up to the Zeeman effect in

the presence of a magnetic field; see below). It should be
remarked that though the same result for ��� may be
obtained in perturbation theory for the isotropic n0p [10]

(see also Ref. [28]), the kinetic theory would be more versa-
tile for this and later purposes; the topological origin of the
parity violating tensor ���� will be apparent in this frame-
work. It is also easy to include the effect of collisions, as we
shall do later. Moreover, it is suitable for other future appli-
cations, such as the inclusion of anisotropy of n0p and nu-

merical simulations of the dynamical evolution of plasmas.
At the leading order in A�, the kinetic theory is given

by [10]

ð@tþ v �rxÞnpþðeEþ v� eB�rx�pÞ �rpnp ¼ 0; (5)

where v ¼ p=p, �p¼pð1�eB��pÞ with �p ¼ �p=2p3

the Berry curvature for right- and left-handed fermions,
respectively. The energy of the chiral fermion is shifted
from �p ¼ p by the amount �peB ��p due to the

magnetic moment of chiral fermions at finite � [10].
This correction makes the term involving rx�p in Eq. (5)

nonvanishing for an inhomogeneous magnetic field, unlike
the conventional Vlasov equation. In the presence of the
Berry curvature flux, the definition of the current is also
modified to [7,9,10]

j¼�e2
Z
p
½�prpnp þ ð�p �rpnpÞ�pBþ �p�p �rxnp�:

(6)

For a moment, we concentrate on right-handed fermions
with chemical potential �. (This theory coupled to
dynamical gauge fields itself is not well defined because
of the gauge anomaly, but we shall eventually consider the
theory with both right- and left-handed fermions, so that
the gauge anomalies are cancelled out.) We solve the
linearized equation of (5) in terms of the deviation �np
from the thermal equilibrium state n0p¼1=½eð�p��Þ=Tþ1�,
where np ¼ n0p þ �np. Note that n0p does not obey n0p ¼
n0�p and breaks parity owing to the Zeeman effect.

Substituting the solution np to the current j and using the

linear response theory (2), the self-energy of the gauge
field can be expressed as ���ðKÞ ¼ �

��
þ ðKÞ þ���� ðKÞ,

where [10]

�
��
þ ðKÞ ¼ �m2

D

�
��0��0 �!

Z dv

4�

v�v�

v � K þ i�

�
; (7)

�ij�ðKÞ ¼ e2�

4�2
i�ijkkk

�
1�!2

k2

�
½1�!LðKÞ�; (8)

are the parity-even and parity-odd self energies with

m2
D ¼ e2

�
T2

6
þ �2

2�2

�
; (9)

LðKÞ ¼ 1

2k
ln
!þ k

!� k
: (10)

Here i, j, k denote the spatial indices [���� ðKÞ is vanishing
otherwise] and v� ¼ ð1; vÞ. Note that�� is shown to be T
independent from the topological nature of the Berry
curvature (see the similar computation of the CME
in Ref. [7]).
Collective modes.—We perform a tensor decomposition

for the self-energy �ij. Recall that �ij is not symmetric
with respect to the indices i and j due to the parity violating
term �ij�; we need to use not only the longitudinal and

transverse projectors, Pij
L ¼ k̂ik̂j and Pij

T ¼ �ij � k̂ik̂j, but

also the antisymmetric tensor, Pij
A ¼ i�ijkk̂k, to fully deco-

mpose the tensor structure of �ij, where k̂i ¼ ki=k. Then
½��1�ij can be written as

½��1�ij ¼ CLP
ij
L þCTP

ij
T þCAP

ij
A ; CL ¼�!2 þ�L;

CT ¼�!2 þ k2 þ�T; CA ¼�A; (11)

where

�L ¼ �m2
D

!2

k2
½1�!LðKÞ�; (12a)

�T ¼ m2
D

!2

2k2

�
1þ k2 �!2

!
LðKÞ

�
; (12b)

�A ¼ e2�k

4�2

�
1�!2

k2

�
½1�!LðKÞ�: (12c)

In order to compute �ij [the inverse of Eq. (11)], it is
convenient to use the properties of the (mutually commut-
able) projectors,

P2
L ¼ PL; P2

T ¼ PT; PLPT ¼ 0; (13a)

P2
A ¼ PT; PLPA ¼ 0; PTPA ¼ PA; (13b)

from which we obtain

�ij ¼ 1

CL

Pij
L þ CT

C2
T � C2

A

Pij
T � CA

C2
T � C2

A

Pij
A : (14)
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Therefore, the dispersion relations of collective modes are
given by CL ¼ 0 and CT � CA ¼ 0, which, respectively,
reduce to

!2 ¼ �LðKÞ; (15)

!2 ¼ k2 þ�TðKÞ ��AðKÞ: (16)

While the dispersion relation for the longitudinal compo-
nent is identical to the case without �A, that for the
transverse component is split up into two parts by the effect
of �A.

Let us compute the dispersion relations of the collective
modes based on Eqs. (15) and (16).

In the long-wavelength limit j!j � k, �A is negligible
compared with �L;T in the leading order, and

�L;T ¼ 1

3
m2

D � !2
pl: (17)

The dispersion relations for the longitudinal and transverse
modes are both given by!2 ¼ !2

pl, implying that nonstatic

gauge fields oscillate with the plasma frequency !pl.

In the quasistatic limit j!j 	 k, using !LðKÞ ¼

ði�=2Þxþ x2 þ ð1=3Þx4 þ � � � for positive and negative
Imð!Þ with x � j!j=k 	 1, the transverse dispersion rela-
tion can be obtained perturbatively in x. Equation (16) with
the minus sign has the solutions,

! ¼ �i�ðkÞ; �ðkÞ ¼ 4��

�2m2
D

k2
�
1� �k

��

�
(18)

for 0 � k � ��=� with � ¼ e2=ð4�Þ, while that with the
plus sign does not; see Fig. 1 for the numerical result of
Eq. (16) in this regime. The mode! ¼ i�ðkÞwith � > 0 is
unstable and grows exponentially as e�i!t � e�t, indicat-
ing the plasma instability. For �� T, the typical scales of
the unstable mode are

k� ��; j!j � ��k2

m2
D

� �2�; (19)

and the time scale of the plasma instability is
�inst ¼ 1=�� 1=ð�2�Þ.
Without �A originating from Berry curvature correc-

tions, there was no unstable mode for isotropic n0p. Note

also that the criteria in Ref. [27] for the conventional
(Weibel) plasma instability [29] is not applicable here.
This is because the assumptions there, n0p ¼ n0�p and

�ij ¼ �ji, are violated by the parity violating effects.
Now these results can easily be extended to a plasma at

finite vector and chiral chemical potentials, �V ¼ �R þ
�L and �5 ¼ �R ��L, by the following replacements:
�2 ! �2

R þ�2
L ¼ ð1=2Þð�2

V þ�2
5Þ in m2

D, and � !
�R ��L ¼ �5 in ��, �A and Eq. (18).
The fate of chiral plasma instabilities.—What is the fate

of chiral plasma instabilities above? Below we shall argue
that this instability reduces �5 so that it is weakened. We
first recall the relation of triangle anomalies,

@tQ5 ¼ 2�

�

Z
x
E �B; (20)

where Q5 is the global chiral charge. Equivalently,

@t

�
Q5 þ �

�
H

�
¼ 0; H ¼

Z
x
A � B; (21)

where H is the Chern-Simons number (which is also
called the magnetic helicity in plasma physics). In QCD,
there is an additional A3 term in H , but it is negligible
under the assumption of small A. Equation (21) is the
conservation of the helicity.
We now show the reduction of �5 within the kinetic

theory in the regime under consideration. We concentrate
on the unstable mode, CT ’ CA at j!j 	 k, for which the

longitudinal part is negligible. Using Eq. (14), Ai ¼ �ijjjext
[see Eq. (4)] reduces to

AiðKÞ ’ i	ðkÞ
!� i�ðkÞ J

i
extðKÞ; (22)

where we defined 	ðkÞ ¼ �2k=ð�m2
DÞ and JiextðKÞ �

ðPij
T � Pij

A ÞjjextðKÞ. In the (t, k) space, Ai satisfies

½@t � �ðkÞ�Aiðt;kÞ ¼ 	ðkÞJiextðt;kÞ: (23)

This can be solved in terms of Ai for jextðt;kÞ ¼
jextðkÞ�ðtÞ:

Aiðt;kÞ ¼ 	e�t
ðtÞJiextðkÞ: (24)

We then obtain Ei ¼ �@tA
i and Bi ¼ �kPij

AA
j as

Eiðt;kÞ ¼ �	½�e�t
ðtÞ þ �ðtÞ�JiextðkÞ; (25)

Biðt;kÞ ¼ k	e�t
ðtÞJiextðkÞ; (26)

where we used PAJext ¼ �Jext that follows from
Eq. (13b). Hence, we find Eðt;kÞ �B�ðt;kÞ< 0 and
Aðt;kÞ �B�ðt;kÞ> 0. From Eq. (20), this unstable mode
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FIG. 1 (color online). Real and imaginary parts of the disper-
sion relation ! ¼ !ðkÞ for the unstable mode.
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decreases �5 for fixed T and increases the magnitude of
H . As a result, it weakens the instability.

The concrete time evolution of the plasma beyond the
leading order in A� can be described by the full kinetic
theory [see Eq. (15) in Ref. [10]] together with Eqs. (1), (6),
and (20), which would require a numerical analysis. Still
the saturation of the instability itself may be understood
from the energy and helicity conservations. We assume
�5 � T or �5 � T. As the energy and magnetic helicity
of electromagnetic fields, �ðkAÞ2 and ��kA2, come from
those of chiral fermions, Oð�4

5Þ and Oð�3
5Þ, we get the

typical scales of k and A relevant to the instability:

k� ��5; A��5

�
; B��2

5: (27)

The electromagnetic fields cannot grow beyond this and
will saturate in the end. At the saturation, the gauge fields
become nonperturbatively large. Thus, if�5 for electrons is
produced during the evolution of neutron stars [25], chiral
plasma instabilities would provide a mechanism to generate
the large magnetic helicity which plays an important role
for the stability of the large magnetic field (see, e.g.,
Ref. [30]).

Effect of collisions.—For�5 � T, the mean free time for
electric charge transfer (or large-angle scatterings) of
the plasma constituents in QED, �large � 1=ð�2T ln��1Þ
[31], is shorter than the time scale of the plasma instability,
�inst � 1=ð�2�5Þ. On the other hand, the mean free path,
llarge � �large, is larger than the typical wavelength of the

plasma instability, 1=kinst � 1=ð��5Þ, and one expects that
the effect of collisions is irrelevant for it.

To see this explicitly, consider the effect of collisions in
the relaxation time approximation: we add the term
��np=�rel in the right-hand side of Eq. (5), where �rel is

the relaxation time assumed to be of the same order as
�large. Then ! in the denominator of Eq. (7) is replaced by

!þ i=�rel. Repeating a similar computation to above, one
finds that the modification to Eq. (18) by the effect of
collisions is subleading in 1=ðkinst�relÞ 	 1 and is negli-
gible. (From this argument, the effect of collisions is
clearly negligible for �5 � T.) As we shall see below,
however, this is not the case in QCD.

Quark-gluon plasma with �5.—Suppose �5 (� T) for
quarks is initially generated in the QGP before the ther-
malization, whose evolution is described by the kinetic
theory. (The case without �5 but with the anisotropy of
np was analyzed in Refs. [26,27].) The above arguments

are then extended to color electromagnetic fields, within
the leading order in A, by replacing � ! �s ¼ g2=ð4�Þ
and m2

D ! ðNf þ 2NcÞg2T2=6þ Nfg
2�2=ð2�2Þ with Nf

and Nc the number of flavors and colors. The qualitative
difference from the QED plasma is that the mean free time
(path) for color charge transfer (or small-angle scatterings)
is now �small � lsmall � 1=ð�sT ln��1

s Þ because colored
gluons, exchanged between quarks, can change the color

charges of the scatterers [32–35]. As �small 	 �inst and
lsmall 	 1=kinst in this case, the collisions can affect the
plasma instability. In the relaxation time approximation,
Lð!þi=�rel;kÞ’�i�rel½1�ðk�relÞ2=3� with �rel � �small,
one indeed finds that Eq. (18) is modified to

�ðkÞ ¼ 3Nf�s�5k

�m2
D�rel

�
1� �k

�s�5

�
: (28)

The unstable modes in 0 � k � �s�5=� still exist but
grow more rapidly with �QCD � 1=ð�2

s�5 ln�
�1
s Þ [36].

Conclusion and outlook.—We have shown that the rela-
tivistic electromagnetic plasma and QGP with finite�5 are
dynamically unstable and�5 is damped by the exponential
growth of (color) electromagnetic fields at the early stage.
As the gauge field grows, the nonlinearity of the gauge field
becomes important [39]. To understand the roles of the
chiral plasma instability at the later stage quantitatively,
more detailed studies of the dynamical evolution of plas-
mas based on the kinetic theory need to be worked out.
It would also be an interesting question whether the insta-
bility persists even at strong coupling where the kinetic
description breaks down.
There are also other directions in which one can extend

or improve our analysis. (i) It is straightforward to include
the anisotropy of n0p analogous to Ref. [26]. This allows for

the study of the coexistence (or competition) with the
Weibel instability. (ii) The effect of the quark mass can
be incorporated in the chirality evolution in Eq. (20), which
makes �5 smaller. These analyses would be important to
understand whether the CME remains an observable effect
in the realistic situations.
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