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We study the average properties of the gluon cascade generated by an energetic parton propagating

through a quark-gluon plasma. We focus on the soft, medium-induced emissions which control the energy

transport at large angles with respect to the leading parton. We show that the effect of multiple branchings

is important. In contrast with what happens in a usual QCD cascade in vacuum, medium-induced

branchings are quasidemocratic, with offspring gluons carrying sizable fractions of the energy of their

parent gluon. This results in an efficient mechanism for the transport of energy toward the medium, which

is akin to wave turbulence with a scaling spectrum �1=
ffiffiffiffi
!

p
. We argue that the turbulent flow may be

responsible for the excess energy carried by very soft quanta, as revealed by the analysis of the dijet

asymmetry observed in Pb-Pb collisions at the LHC.
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One important phenomenon discovered recently in
heavy ion experiments at the LHC is that of dijet asymme-
try, a strong imbalance between the energies of two back-
to-back jets. This asymmetry is commonly attributed to the
effect of the interactions of one of the two jets with the hot
QCD matter that it traverses, while the other leaves the
system unaffected. Originally identified [1,2] as missing
energy, this phenomenon has been subsequently shown [3]
to consist in the transport of a sizable part of the jet energy
by soft particles toward large angles. Some of the features
of in-medium jet propagation are well accounted for by
the BDMPSZ mechanism for medium-induced radiation
(from Baier, Dokshitzer, Mueller, Peigné, Schiff [4], and
Zakharov [5]). However, most studies within this approach
have focused on the energy lost by the leading particle,
while the LHC data call for a more thorough analysis of the
jet shape for which the effects of multiple branching at
large angles are important. Within that context, an impor-
tant step was achieved in Ref. [6], where it was shown that,
in a leading order approximation, one could consider suc-
cessive gluon emissions as independent of each other. This
allows one to treat multiple emissions as a probabilistic
branching process, in which the BDMPSZ spectrum plays
the role of the elementary branching rate [7–9].

Specifically, the differential probability per unit time
and per unit z for a gluon with energy ! to split into two
gluons with energy fractions respectively z and 1� z is

d2P br

dzdt
¼ �s

2�

Pg!gðzÞ
�brðz;!Þ ; �br ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ!

q̂eff

s
; (1)

where Pg!gðzÞ ¼ Nc½1� zð1� zÞ�2=zð1� zÞ is the lead-

ing order gluon-gluon splitting function, Nc is the number
of colors, q̂eff � q̂½1� zð1� zÞ�, with q̂ the jet quenching
parameter (the rate for transverse momentum broadening
via interactions in the medium), and �brðz;!Þ is the
time scale of the branching process. Note that we use

light-cone (LC) coordinates and momenta, with the longi-
tudinal axis defined by the direction of motion of the
leading particle. Correspondingly, the ‘‘energy’’ ! truly
refers to the LC longitudinal momentum pþ and t to
the LC ‘‘time’’ xþ. Equation (1) applies as long as
‘ � �brðz;!Þ< L, where L is the length of the medium
and ‘ is the mean free path between successive collisions.
The second inequality above implies an upper limit on the
average energy of the offspring gluons: zð1� zÞ! & !c,
where !c ¼ q̂L2=2 is the maximum energy that can be
taken away by a single gluon. It follows from Eq. (1) that
the probability for having just one emission throughout the

medium is (for z not too close to 1) � ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!c=z!

p
, where

�� � �sNc=�. When this becomes of Oð1Þ, i.e., when
z! & !s � ��2!c, multiple branchings become important.
Note the correlation between the energy ! of the emitted
gluon and the emission angle �br with respect to the jet

axis: one has �br ’ ð2q̂=!3Þ1=4, showing that soft gluons
are emitted at large angles. This correlation will be impor-
tant for the physical interpretation of our results.
It will be useful to express the energy ! of a radiated

gluon in terms of the energy fraction x � !=E of the initial
energy E and to replace the light-cone time t by the
dimensionless variable

� � ��

ffiffiffiffî
q

E

s
t ¼ ��

ffiffiffiffiffiffiffi
2xc

p t

L
; (2)

where xc � !c=E. We restrict ourselves here to the case
E<!c, i.e., xc > 1, leaving the discussion of the E>!c

case to a forthcoming publication. Note that the maximal
value of � is �max ¼ ��

ffiffiffiffiffiffiffi
2xc

p
, corresponding to t ¼ L.

Then, the branching probability (1) can be written as

dP br

dzd�
¼ 1

2

KðzÞffiffiffi
x

p ; (3)
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where KðzÞ � fðzÞ=½zð1� zÞ�3=2 ¼ Kð1� zÞ and

fðzÞ � ½1� zð1� zÞ�5=2.
In this Letter, we focus on one observable that character-

izes the average properties of the in-medium cascade: the
gluon spectrum Dðx; �Þ � xðdN=dxÞ, with N the number
of gluons. By exploiting the fact that successive branchings
are independent [6] and using standard techniques for
classical branching processes [10], one can show that
Dðx; �Þ obeys the following evolution equation:

@Dðx; �Þ
@�

¼
Z

dzKðzÞ
� ffiffiffi

z

x

r
D

�
x

z
; �

�
� zffiffiffi

x
p Dðx; �Þ

�
: (4)

The initial condition corresponds to a single gluon carrying
all the energy, that is, Dðx; � ¼ 0Þ ¼ �ðx� 1Þ. We shall
refer to the right-hand side of Eq. (4) as the ‘‘collision
term’’ and denote it as I½D�. Its physical interpretation is
clear: The first contribution, which is nonlocal in x (except
when x is close to 1), is a gain term: it describes the rise in
the number of gluons at x due to emissions from gluons
at larger x. Note that the function Dðx; �Þ has support only
for 0 � x � 1, which limits the first z integral in Eq. (4) to
x < z < 1. The second contribution to the collision term,
local in x, represents a loss term, describing the reduction
in the number of gluons at x due to their decay into gluons
with smaller x. Taken separately, the gain term and the loss
term in Eq. (4) have end point singularities at z ¼ 1, but
these singularities exactly cancel between the two terms
and the overall equation is well defined.

For � � 1, we may attempt to solve Eq. (4) in
perturbation theory, i.e., by iterations. Thus, by substitut-
ing, in the collision term, Dðx; �Þ by its initial value

Dð0ÞðxÞ ¼ �ðx� 1Þ, one obtains (for x < 1)

Dð1Þðx; �Þ ¼ �fðxÞffiffiffi
x

p ð1� xÞ3=2 : (5)

For � ¼ �max, this is just the BDMPSZ spectrum. For
reasons that will become clear shortly, we refer to the
small-x part of this spectrum as the ‘‘scaling spectrum,’’
i.e., DscðxÞ � 1=

ffiffiffi
x

p
. A priori, because one expects the

small-x region of the spectrum to be populated by multiple
branchings, leading to a breakdown of perturbation theory
when x & �2, one could also expect the spectrum to be
strongly modified in this region. As we shall see, this is not
at all the case: the scaling spectrum remains remarkably
stable (see also Ref. [7] for a similar observation).

In order to go beyond perturbation theory and get insight
into the nonperturbative features of Eq. (4), we have con-
sidered a simpler version of this equation, obtained by

modifying the kernel to K0ðzÞ ¼ 1=½zð1� zÞ�3=2 [i.e.,
replacing the smooth function fðzÞ by 1 in Eq. (3)]. This
simplification does not affect the singular behavior of
the kernel near z ¼ 0 and z ¼ 1, which determines the
qualitative features of the solution, but it allows us to solve
Eq. (4) exactly, via a Laplace transform. The solution reads

D0ðx; �Þ ¼ �ffiffiffi
x

p ð1� xÞ3=2 e
��½�2=ð1�xÞ�: (6)

The essential singularity at x ¼ 1 is a nonperturbative
effect that can be understood as a Sudakov suppression
factor [8] (i.e., the vanishing of the probability to emit no
gluon in any finite time). Aside from this exponential
factor, one recognizes the scaling spectrum which
D0ðx; �Þ is proportional to at small x. This is illustrated
in Fig. 1: we see that the scaling spectrum is established
early on and remains stable as time progresses. For small
times, its amplitude grows linearly with �: the system can
then be viewed as a radiating source located at x & 1 and
feeding all the small-x modes. As time passes, the source
weakens and eventually disappears into the left moving
‘‘shock wave’’ visible in Fig. 1.
Another important feature of the branching dynamics illus-

trated in Fig. 1 is the fact that the total energy which is stored
in the spectrum (i.e., in the gluon modes with 0< x< 1)

decreases with time: E0ð�Þ �
R
1
0 dxD0ðx; �Þ ¼ e���2 . This

is related to the existence of a scaling solution, as alluded to
above: the fact that the spectrum keeps the same shape at
small x when increasing � implies that the energy flows from
higher to lower values of xwithout accumulating at any value
x > 0. This should be contrasted to what happens in standard
parton cascades, like that described by the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [11]. In
that case, the spectrumbecomes steeper and steeper at small x
with increasing evolution time, and the energy sum ruleR
1
0 dxDðx; �Þ ¼ 1 is satisfied at any �—‘‘the energy remains

in the spectrum.’’ Returning to the medium-induced branch-
ing process, we note that the energy is conserved in that
case, too, since it is so at each elementary branching.
Formally, what happens is that a ‘‘condensate’’ develops at
x ¼ 0, playing the role of a sink where the excess energy
coming from the large-x region gets stored. With increasing
time, a substantial fraction of the total energy can thus flow
‘‘outside the spectrum.’’
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FIG. 1 (color online). Plot (in log-log scale) of
ffiffiffi
x

p
D0ðx; �Þ,

with D0ðx; �Þ given by Eq. (6), as a function of x for various
values of � (full lines from bottom to top, � ¼ 0:01, 0.02, 0.1,
0.2, 0.4; dashed lines from the top down, � ¼ 0:6, 0.9).
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To shed more light on this flow phenomenon, it is
instructive to analyze an auxiliary problem—that of a
system driven by a permanent source of energy localized
at x ¼ 1. Consider then the equation

@Dðx; �Þ
@�

¼ A�ð1� xÞ þ I½D�: (7)

For the simplified kernel K0, one readily verifies that the
‘‘turbulent spectrum’’ (see below)

Dtbðx; �Þ ¼ A

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp ð1� e��½�2=ð1�xÞ�Þ (8)

solves this equation with initial condition Dtbðx; � ¼ 0Þ ¼ 0
[observe that the derivative of Dtbðx; �Þ is equal to D0ðx; �Þ,
to within the multiplicative constant A]. By comparing
Figs. 1 and 2, one sees that the behaviors of D0ðx; �Þ and
Dtbðx; �Þ are remarkably similar at small �. However, the
most remarkable property ofDtbðx; �Þ is that it converges to a
steady functionDstðxÞ ¼ ðA=2�Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1� xÞp
. To understand

this, we note that DstðxÞ annihilates (exactly) the collision
term, i.e., I½Dst� ¼ 0, as can be verified by an explicit
calculation. As time goes on, the solution Dtbðx; �Þ is gradu-
ally driven to DstðxÞ, but since this fixed-point solution
reduces to the scaling spectrum at x � 1, one observes no
change in the shape at small x but just an overall time-
dependent scaling.

We complete our analysis by calculating the flow of
energy that gets transmitted per unit time from the region
x > x0 to the region x < x0. If we denote by Eðx0; �Þ ¼R
1
x0
dxDðx; �Þ the total energy that is contained in the

modes with x > x0 and recognize that the rate of change
of Eðx0; �Þ is due both to a possible source of strength A
localized at x ¼ 1 and to the flow P ðx0; �Þ at x0, we get the
general expression

P ðx0; �Þ � A� @Eðx0; �Þ
@�

¼ �
Z 1

x0

dxI½D�: (9)

An explicit calculation for D ¼ Dtb yields

P ðx0; �Þ ¼ A

2
41� e���2erfc

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x0

1� x0

s
�

1
A
3
5; (10)

where erfcðxÞ denotes the complementary error function. In
order to analyze the physical content of this expression, it
is actually useful to rewrite the integral of the collision
term in Eq. (9) in the following form:

P ðx0; �Þ ¼
Z 1

0
dzzKðzÞ

Z minð1;x0=zÞ

x0

dx
Dðx; �Þffiffiffi

x
p : (11)

At small times, ��2 � 1, and for x0 not too close to
either 0 or 1, one can use the expansion erfcðxÞ ’
1� 2x=

ffiffiffiffi
�

p
in Eq. (10) and get P ðx0; �Þ ’

2A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0=ð1� x0Þ

p
. This result can also be obtained

from Eq. (11) by substituting Dðx; �Þ with Dð1Þðx; �Þ ¼
A��ð1� xÞ, as appropriate at small time. Thus, we can
interpret this early-time contribution to P ðx0; �Þ as due
to direct radiation from the source at x ¼ 1 toward the
various modes at x0 < 1. Note that this involves branchings
with z � x0 which, for x0 � 1, are strongly asymmetric
(z � 1).
As time goes on, however, the distribution of energy

among the various modes is such that gain and loss terms
equilibrate locally, at which point a steady state is reached
with all the energy provided by the source flowing through-
out the entire system and leaving the population of the
various modes unchanged. In the steady regime reached
for � * 1=

ffiffiffiffi
�

p
, the energy flux P ðx0; �Þ is both stationary

(� independent) and uniform (x0 independent), and equal to
A (the flux inserted by the source). Actually, this uniform
component of the flow develops already at earlier times. It
can be obtained by evaluating Eq. (10) at x0 ¼ 0 and reads

P ðx0 ¼ 0; �Þ ¼ Að1� e���2Þ. This result can be recov-
ered from Eq. (11) with x0 � 1 by approximating

Dðx; �Þ with the scaling part of the spectrum (8), Dðx; �Þ ’
Að1� e���2Þ=ð2� ffiffiffi

x
p Þ, and noting that

�0 �
Z 1

0
dz

1ffiffiffi
z

p ð1� zÞ3=2 ln
1

z
¼ 2�: (12)

What this second calculation demonstrates is that, in con-
trast to what happens for the direct radiation, here the
typical branchings involve the whole range of z values
[about half of the value of the integral (12) comes from
the range 0:15 & z & 0:85]. We refer to this property as
‘‘quasidemocratic branching.’’
The properties that we have just discussed, namely, the

existence of a steady scaling solution when the system is
coupled to a source and, related to it, the presence of a
component of the flow that is independent of the energy,
are distinctive signatures of what is known as (weak) wave
turbulence [13]. A crucial ingredient of this phenomenon is
the locality of the interactions in momentum space, a
property which in the present case is only marginally
satisfied, as quasidemocratic branching.
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FIG. 2 (color online). The function
ffiffiffi
x

p
Dtbðx; �Þ [Eq. (8) for

A ¼ 1] at various times—from early time, where it resembles
Fig. 1, until late time, when it approaches the steady state and
saturates at the value A=2� at small x. The values of � are, from
bottom to top, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.
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We wish to stress that democratic branching is not
common in standard parton cascades, like the one
described by the DGLAP equation, which are rather con-
trolled by very asymmetric branchings (with z near 0 or 1).
In particular, one can verify that for the DGLAP cascade,
the energy flow vanishes when x0 ! 0 [roughly like
P ðx0Þ � x0 lnð1=x0Þ]: the total energy of the cascade
remains in the spectrum, as already mentioned.
Furthermore, the total energy carried by the soft modes
at x � x0 with x0 � 1 is relatively small, as can be inferred
from phase-space considerations. This is very different
from the turbulent cascade studied here, in which a signifi-
cant fraction of the total energy is transported below any
given value x0 > 0, meaning at very large angles.

Many of the features that we have uncovered by study-
ing the source problem and for the simplified kernel remain
valid without the source, and for the general kernel, as we
have verified via an explicit numerical solution. We return
now to this initial setting and limit ourselves to small times,
for which we can obtain analytical estimates. The flow,
calculated from Eq. (11), takes the form

P ðx0; �Þ ’ 2
ffiffiffiffiffi
x0

p þ ��; (13)

where � ¼ 4:96 is given by an integral similar to that in
Eq. (12) but with the full fðzÞ in the integrand. One
recognizes in Eq. (13) the two components that we dis-
cussed earlier, that is, the direct radiation (2

ffiffiffiffiffi
x0

p
) and the

turbulent flow (v�). Although formally subleading at small
times, the turbulent flow dominates over direct radiation
when x0 & �2, that is, in the region where multiple branch-
ings are known to be important.

The total energy transported by the turbulent flow can be
estimated by integrating the second term of Eq. (13) over
time. Returning to physical units, one gets

E flow ¼ E
��2max

2
¼ � ��2!c; (14)

a result which, remarkably, is independent of the energy
E of the leading particle. This turbulent flow is a part of the
jet energy that is not carried by the particles present in the
spectrum. It corresponds to what we identified earlier as
the energy stored in a condensate at x ¼ 0. In more physi-
cal terms, we may associate this energy with that trans-
ferred to the medium in the form of very soft quanta
emitted at large angles.

It is beyond the scope of this Letter to present a detailed
comparison with the data. However, the following order-
of-magnitude estimates should confirm the relevance of the
present discussion for the dijet asymmetry observed at
the LHC. Using the conservative estimate !c ¼ 40 GeV
(corresponding to q̂ ¼ 1 GeV2=fm and L ’ 4 fm),
together with ��2 ’ 0:1, one finds Eflow ’ 20 GeV, a value
that compares well with the observations. Indeed, the
detailed analysis by CMS [3] shows that the energy imbal-
ance between the leading and the subleading jets is

compensated by an excess of semihard (pT < 8 GeV)
quanta propagating at large angles, outside the cone defin-
ing the subleading jet. For the most asymmetric events, the
total energy in excess is about 25 GeV. Remarkably, most
of this energy (about 80%) is carried by very soft quanta
with pT � 2 GeV [14]. This observation would be difficult
to reconcile with the hypothesis that these particles come
from gluons in a BDMPSZ-like spectrum (which would
imply that most of the excess energy would be carried by
the hardest gluons with energies & 8 GeV). But, it could
be naturally explained by associating these soft particles
with those transported by the turbulent flow that we have
discussed in this Letter.
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