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We present the first (3 + 1)-dimensional numerical simulations of scalar fields with nonminimal kinetic
terms. As an example, we examine the existence and stability of preheating in the presence of a Dirac-
Born-Infeld inflaton coupled to a canonical matter field. The simulations represent the full nonlinear
theory in the presence of an expanding universe. We show that parametric resonance in the matter field
along with self-resonance in the inflaton repopulate the universe with matter particles as efficiently as

in traditional preheating.
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Scalar fields need not be Klein-Gordon-like in four
dimensions; theories that include extra dimensions,
whether large or small, have effective four-dimensional
kinetic terms that are nonminimal. This has led to an
increased interest in the dynamics of nonminimal models
both to describe inflation, e.g., Dirac-Born-Infeld (DBI)
inflation [1], and even more recently, dark energy [2—4]. In
this Letter, we will focus on DBl inflation, as an example of
a system for which we have a scalar degree of freedom
whose behavior is self-consistent and stable and whose
nonminimal behavior is central to the dynamics of the
model. Here, we focus on what happens at the end of
inflation when the scalar inflaton becomes inhomogeneous
and its couplings to other fields are important. To our
knowledge, these are the first three-dimensional lattice
simulations of this type of field theory.

Preheating [5-17] provides a mechanism by which the
cold postinflationary universe can quickly and efficiently
transfer energy into a matter sector, via a period of para-
metric resonance or a regime of tachyonic instability. For the
most part, studies of preheating have focused on the exis-
tence and stability of these processes in the presence of
different inflationary potentials, e.g., Refs. [17-22], multiple
fields [23], and multiple decay channels [24]. DBI inflation
might end with a coherently oscillating scalar field, and
it has been unclear whether preheating can persist in the
presence of nonlinear terms in its equation of motion. The
search for preheating in nonminimal models began in
the work of Ref. [25], where the authors showed that a
canonical scalar field can enhance the effects of parametric
resonance in a coupled nonminimal matter field.

The first studies that considered nonminimal inflationary
fields [26] looked at the production of particles during the
first oscillation, instant preheating, as a possible source of
non-Gaussianities in the cosmic microwave background;
restricting the treatment to the first oscillations allows a
complete analytic treatment of the amplification of the
matter field but does not capture the majority of the
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preheating dynamics. Later, the authors of Ref. [27]
studied a DBI-type model with perturbative departures
from a canonical kinetic term so that the potential domi-
nated the preheating dynamics. In this case, preheating
persists and is perturbatively enhanced, but in addition
self-resonance occurs in the inflaton. At the other extreme,
the authors of Ref. [28] studied a case where the
nonminimal kinetic term is dominant. In this case, the
potential is irrelevant during most of the oscillation and
the field profile develops a ‘““sawtooth’ oscillatory profile.
Furthermore, the authors argue that this feature suppresses
preheating.

Here, we study the full nonlinear theory on a three-
dimensional lattice. We will not assume that the nonminimal
terms are small or that the inflaton is purely homogenous.
Such a treatment allows us to study the existence of reso-
nance in the coupled field, any self-resonance in the inflaton,
and any nonlinear effects that take place after the resonant
periods cease. Furthermore, all analytical analyses of
preheating with nonminimal kinetic terms require many
simplifying assumptions: they may disregard Hubble
friction and must ignore the spatial gradient terms in the
equation of motion. Numerical simulations are needed to
verify the possibility of preheating in this model outside
the nonrelativistic limit and to see any interesting physics
that arise from the interactions between the two fields.
We begin by considering the standard action for a DBI
inflaton [1]

_1 [
S =5 [ d4x\/_g[gR + 2P, X)], (1)
where m = 1/G, X = —9*¢d, ¢, and
1
P6.3) = (VI 50X —1) - V(o). @
f(9)
We will take the warp factor f to satisfy [1]
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It is related to the geometry of the extradimensional space
in which the brane is moving; the form in Eq. (1) corre-
sponds to the case of a cutoff anti—de Sitter throat. In a
braneworld scenario, ¢ would correspond to the radial
distance of the brane to the horizon. Note that in the limit
where fX < 1, we recover the canonical kinetic term; the
magnitude |fX| therefore characterizes departures from
the standard scenario.
The full nonlinear equation of motion for ¢, from
Eq. (1), is

di(] + %aquaqu)

ad VP f 33X 1 (Vv _f
"yt e e et )
\& . d .

L= 6%)0,60,0 - Voo

- DPUELN 4 25,01,6] @

in a Friedmann-Lemaitre-Robertson-Walker universe,
ds* =g, dxtdx" = —di* + a*(1)[dx* + dy* + dz*], %)
background. The combination y = (1 — fX)~!/2 describes
how relativistically the brane is moving and is analogous to
the usual Lorentz factor. We will assume that the matter field
is a massless canonical, Klein-Gordon field whose equation
of motion is
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and the full potential of the model is the combination of the

inflationary potential and a coupling between the two
fields,

1 1
Vg, x) = §m2¢2 + §g2¢2x2- (7)

Since we are interested in effects due to the nonminimal
nature of the field, we will not allow the parameters in the
potential to change from the standard values used in the
preheating literature, m = 10~%m, and g* = 2.5 X 107.
We will take the ratio A/u* as a free parameter.

The contribution to the energy density from the inflaton,

1 .
Py =?(7" — 1)+ yé? (8)

differs from the energy density associated with the matter
field,
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The combination of the two with the potential energy
p = py T p, + V(e x) together source the self-consistent
expansion of the universe,
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Numerical simulations.—Simulations were performed
using Grid and Bubble Evolver (GABE) [29], a new lattice
evolution program that uses a second-order Runge-Kutta
method of integration. Unlike existing lattice codes
[30-33] that use symplectic integration routines, GABE
stores the field and field derivative value at the same times
during the time step. This method is slower and requires
more physical memory to run than symplectic integrators
but is necessary when terms include the product of the field
with its time derivative. We offset the slower performance
by parallelization using OPENMP. We postpone a complete
analysis of all relevant values of A/u* for a subsequent
publication, instead focusing on a single case, u = 103mp1
and A/p* = 5000m.*, as a representative model. In the
numerical simulations here, we use a box of N3 = 256°
points. Running on four cores, each run takes approxi-
mately 8 days to complete.

We initialize the homogeneous mode of the matter field as

x(k =0, =0) = 0, whereas the homogeneous modes of
the inflaton and its derivative are consistent with their values
at the end of inflation, when & drops below zero. We calculate
these initial conditions using a sixth-order Runge-Kutta
homogeneous field evolution program to evolve the field ¢
during inflation, when it obeys Eq. (4) without the gradient
terms. For our case of interest here, ¢py = 4.5 X 1072mp1 and

bo =~ —1.4 X 10~%m;,. Although the dynamics of the field

is different, even at the end of inflation, these values are close
to those expected in the canonical model.

Both fields and their derivatives are initialized with
fluctuations that are consistent with the Bunch-Davies
vacuum, in a way analogous the situation in Ref. [30], so
that the power spectrum of the fields on the initial slice is

1 1
(D0 =5 (k) =5,

(an

Xk

We use this choice of vacuum for subhorizon fluctuations
of the inflaton, as an approximation. At the end of inflation,
field gradients are washed out and we expect fluctuations to
be perturbations to the homogeneous background. As there
is no better choice, we assume a Bunch-Davies vacuum for
both fields and expect that deviations from this choice of
initial conditions will have no effect on the main result
here, as preheating is generally insensitive to modifications
to the initial power spectrum [31]. After initialization,
the fields are evolved for several hundred oscillations of
the inflaton field, until 7, ~ 250m~!, in an expanding
background.
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The software calculates the means, variances, and
energy density of both fields as well as their energy and
power spectra. Two-dimensional slices of the field profile
are also generated as well as the space-averaged value of y.
The scale factor grows by a factor of about a; ~ 17 (when
A/ u* = 5000) compared to a ¢~ 27 (in the canonical case
for the same final time).

Results.—The evolution of the inflaton field during both
inflation and its first few oscillations shows the effects
expected due to the presence of these noncanonical terms.
In the DBI case, as the velocity of the field grows, the
relativistic factor y also grows, decreasing the influence
of the potential term on the acceleration of the field.
Mathematically, to guarantee the reality of vy, ¢ cannot
exceed f~'/2; however, in practice we see that the true
speed limit is somewhat smaller and is a consequence of
the nonlinear dynamics of the field. We can easily see the
effects of the speed limit on the oscillations of the inflaton
after inflation. In fact, the mean value of ¢ on the lattice
does not oscillate sinusoidally but instead reaches its maxi-
mum velocity quickly, after which it travels at a constant
speed for much of each oscillation. The evolution of ¢
thus approaches a sawtooth pattern as A/u* increases, as
predicted in Ref. [28]; see Fig. 1.

We have run simulations with initial values of y varying
from 1 < y < 10, consistent with the Planck 2013 con-
straint y =< 14 at 95% confidence [34]. In all simulations,
we see significant effects due to parametric resonance by
approximately ¢~ 100m~!. We can identify parametric
resonance by the exponential amplification of particular
modes of the matter field y, which result in an exponential
increase in the variance of the matter field over time.
We can see this schematically by noting the inflaton is a
coherently oscillating field ¢ = ®(r); the mode equations
for the matter field,

Rp 35y + (2 + 222y =0, (12)
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FIG. 1 (color online). Evolution of the mean inflaton field
value for simulations with A/u* = 5000, y, =~ 8.7 (red solid
line) and the canonical case f — 0 (blue dashed line).

are then damped harmonic oscillators with a time-
dependent mass. In the case of a sinusoidally varying @,
we can reduce Eq. (12), after ignoring the expansion of the
universe, to the Mathieu equation and predict the spectrum
of amplifications. If we allow ® to be a sawtooth function
whose amplitude decreases and whose period increases,
the consequences for preheating are unclear. On one hand,
we expect that the time-varying period of oscillation
should do harm to the period of parametric resonance.
Some modes will experience small amplifications during
each oscillation, but there is no assurance that any particu-
lar mode is amplified repeatedly.

On the other hand, the sawtooth is actually many Fourier
modes; it represents many forcing terms, each with differ-
ent resonance bands. Since the resonance in this case is
much broader, we might expect that more modes are in
resonance at any given time and the efficiency of para-
metric resonance is increased. Figure 2 shows the com-
parison between the canonical and the DBI cases. The y
field is efficiently amplified during the preheating process,
not hindered by the sawtooth oscillations.

Perhaps more interesting is the burgeoning impor-
tance of self-resonance. The extra terms in Eq. (4)
give rise to self-interactions that provide a mechanism
for self-resonance. Unlike in the canonical case, the
modes of ¢ undergo strong self-resonance in the pres-
ence of nonminimal terms. Figure 3 shows the dramatic
difference in the two regimes; indeed, for the case of
interest here, we see that the self-resonance is faster
and more efficient than the induced parametric reso-
nance in the matter field. This can be seen in Fig. 3, since
the variance of ¢ for the nonminimal case grows quickly in
the early stages of the simulation, whereas in the canonical
case, the variance of ¢ decreases during this time. The
existence of self-resonance is generic for different values of
A/ u*, becoming more significant as we depart further from
the canonical case.
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FIG. 2 (color online). Variance of the matter y fields. The red
(solid) lines represent the fields when A/u* = 5000 (initial
v = 8.7), and the blue (dotted) lines represent the canonical
(f — 0) case.
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FIG. 3 (color online). Variance of the inflaton ¢ field. The red
(solid) lines represent the fields when A/u* = 5000 (initial
v = 8.7), whereas the blue (dotted) lines represent the canonical
(f — 0) case.

In both simulations, the periods of resonance cease
around ¢ ~ 25m~!. At this point, the two fields are suffi-
ciently inhomogeneous that they begin to interact and
thermalize via the g”>¢”x?/2 interaction. Lack of three-
leg interactions, as is common in preheating simulations,
makes it impossible for the ¢ field to decay completely
[16]. Nonetheless, we see a final state consistent with any
simulations of preheating after quadratic inflation.

Discussion.—The above simulations, the first to model a
scalar field obeying an equation of motion with nonminimal
kinetic terms in a (3 + 1)-dimensional universe, reveal that
even when those noncanonical terms are large, preheating
occurs. We see that the parametric amplification of non-
thermal modes of a coupled matter field is just as efficient
as that in the traditional preheating scenario. Moreover, as
we depart from the canonical case, parametric resonance is
no longer the primary cause of preheating; instead, the self-
interaction of the field causes almost immediate and efficient
particle production. The fact that the inflaton does not vary
sinusoidally after inflation is not a death sentence for
preheating; on the contrary, the spectral diversity of the
homogeneously oscillating mode of ¢ acts as a source of
inhomogeneity equally as efficient as a pure sinusoid.

Since the structure of preheating is so similar, one can
additionally expect that the gravitational wave spectrum
from preheating [35-43] as well as any other observable
consequences, e.g., non-Gaussianities [44—49], should not
be any less significant, although we leave these analyses
for other work. We also delay a discussion of how self-
resonance effects are important when considering the gen-
eration of pseudostable, nonlinear structures in the inflaton
field [50,51].

Just as importantly, this work serves as a proof of
concept that (3 + 1)-dimensional lattice simulations can
simulate fields with nonminimal kinetic terms. This should
pave the way for simulating tensor fields with nonminimal
kinetic terms sourced by scalar fields.

In a future paper, we will present the results of simula-
tions with a range of values of vy at the end of inflation. We
also delay predictions for the spectrum of amplifications
that one expects from this process.

We want to thank Mustafa Amin for very useful discus-
sions. H.L.C. and J.T.G. are supported by National
Science Foundation Grant No. PHY-1068080 and a
Cottrell College Science Award from the Research
Corporation for Science Advancement.

[1] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505
(2004).
[2] C. de Rham and L. Heisenberg, Phys. Rev. D 84, 043503
(2011).
[3] S.F. Hassan and R.A. Rosen, J. High Energy Phys. 02
(2012) 126.
[4] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D
79, 064036 (2009).
[5] J.H. Traschen and R. H. Brandenberger, Phys. Rev. D 42,
2491 (1990).
[6] L.Kofman, A.D. Linde, and A. A. Starobinsky, Phys. Rev.
Lett. 73, 3195 (1994).
[7] J. Garcia-Bellido and A.D. Linde, Phys. Rev. D 57, 6075
(1998).
[8] S.Y. Khlebnikov and I.1. Tkachev, Phys. Rev. D 56, 653
(1997).
[9] B.R. Greene, T. Prokopec, and T. G. Roos, Phys. Rev. D
56, 6484 (1997).
[10] M. Parry and R. Easther, Phys. Rev. D §9, 061301 (1999).
[11] B.A. Bassett, D.I. Kaiser, and R. Maartens, Phys. Lett. B
455, 84 (1999).
[12] R. Easther and M. Parry, Phys. Rev. D 62, 103503 (2000).
[13] A.R. Liddle, D.H. Lyth, K. A. Malik, and D. Wands,
Phys. Rev. D 61, 103509 (2000).
[14] F. Finelli and S. Khlebnikov, Phys. Rev. D 65, 043505
(2002).
[15] B.A. Bassett, S. Tsujikawa, and D. Wands, Rev. Mod.
Phys. 78, 537 (2006).
[16] D.I. Podolsky, G.N. Felder, L. Kofman, and M. Peloso,
Phys. Rev. D 73, 023501 (2006).
[17] J. Garcia-Bellido, arXiv:hep-ph/9804205.
[18] D. Boyanovsky, H.J. de Vega, R. Holman, and J.F.J.
Salgado, arXiv:astro-ph/9609007.
[19] I. Tkachev, arXiv:hep-ph/9701376.
[20] J. Baacke, K. Heitmann, and C. Patzold, Phys. Rev. D 55,
7815 (1997).
[21] L. Kofman, arXiv:astro-ph/9802221.
[22] A. Mazumdar, J. Phys. Conf. Ser. 405, 012022 (2012).
[23] D. Battefeld, T. Battefeld, and J. T. Giblin, Jr., Phys. Rev.
D 79, 123510 (2009).
[24] J.T. Giblin, Jr., L.R. Price, and X. Siemens, J. Cosmol.
Astropart. Phys. 08 (2010) 012.
[25] J. Lachapelle and R.H. Brandenberger, J. Cosmol.
Astropart. Phys. 04 (2009) 020.
[26] T. Matsuda, J. High Energy Phys. 10 (2008) 089.
[27] N. Bouatta, A.C. Davis, R.H. Ribeiro, and D. Seery,
J. Cosmol. Astropart. Phys. 09 (2010) O11.

051301-4


http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1007/JHEP02(2012)126
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.42.2491
http://dx.doi.org/10.1103/PhysRevD.42.2491
http://dx.doi.org/10.1103/PhysRevLett.73.3195
http://dx.doi.org/10.1103/PhysRevLett.73.3195
http://dx.doi.org/10.1103/PhysRevD.57.6075
http://dx.doi.org/10.1103/PhysRevD.57.6075
http://dx.doi.org/10.1103/PhysRevD.56.653
http://dx.doi.org/10.1103/PhysRevD.56.653
http://dx.doi.org/10.1103/PhysRevD.56.6484
http://dx.doi.org/10.1103/PhysRevD.56.6484
http://dx.doi.org/10.1103/PhysRevD.59.061301
http://dx.doi.org/10.1016/S0370-2693(99)00478-5
http://dx.doi.org/10.1016/S0370-2693(99)00478-5
http://dx.doi.org/10.1103/PhysRevD.62.103503
http://dx.doi.org/10.1103/PhysRevD.61.103509
http://dx.doi.org/10.1103/PhysRevD.65.043505
http://dx.doi.org/10.1103/PhysRevD.65.043505
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/PhysRevD.73.023501
http://arXiv.org/abs/hep-ph/9804205
http://arXiv.org/abs/astro-ph/9609007
http://arXiv.org/abs/hep-ph/9701376
http://dx.doi.org/10.1103/PhysRevD.55.7815
http://dx.doi.org/10.1103/PhysRevD.55.7815
http://arXiv.org/abs/astro-ph/9802221
http://dx.doi.org/10.1088/1742-6596/405/1/012022
http://dx.doi.org/10.1103/PhysRevD.79.123510
http://dx.doi.org/10.1103/PhysRevD.79.123510
http://dx.doi.org/10.1088/1475-7516/2010/08/012
http://dx.doi.org/10.1088/1475-7516/2010/08/012
http://dx.doi.org/10.1088/1475-7516/2009/04/020
http://dx.doi.org/10.1088/1475-7516/2009/04/020
http://dx.doi.org/10.1088/1126-6708/2008/10/089
http://dx.doi.org/10.1088/1475-7516/2010/09/011

PRL 111, 051301 (2013)

PHYSICAL REVIEW LETTERS

week ending
2 AUGUST 2013

(28]

[29]
(30]

(31]
(32]

(33]
[34]
[35]
[36]

(37]
(38]

(39]

[40]

J. Karouby, B. Underwood, and A. C. Vincent, Phys. Rev.
D 84, 043528 (2011).

http://cosmo.kenyon.edu/gabe.html

G.N. Felder and I. Tkachev, Comput. Phys. Commun.
178, 929 (2008).

A. V. Frolov, J. Cosmol. Astropart. Phys. 11 (2008) 009.
R. Easther, H. Finkel, and N. Roth, J. Cosmol. Astropart.
Phys. 10 (2010) 025.

Z. Huang, Phys. Rev. D 83, 123509 (2011).

P. A.R. Ade et al. (Planck Collaboration), arXiv:1303.5082.
R. Easther and E. A. Lim, J. Cosmol. Astropart. Phys. 04
(2006) 010.

R. Easther, J. T. Giblin, Jr., and E. A. Lim, Phys. Rev. Lett.
99, 221301 (2007).

G. N. Felder and L. Kofman, Phys. Rev. D 75, 043518 (2007).
J. Garcia-Bellido and D. G. Figueroa, Phys. Rev. Lett. 98,
061302 (2007).

R. Easther, J. T. Giblin, Jr., and E. A. Lim, Phys. Rev. D
77, 103519 (2008).

J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman, and
J.P. Uzan, Phys. Rev. D 76, 123517 (2007).

[41]
[42]
[43]
[44]
[45]
[46]

[47]

(48]

[49]
[50]

[51]

051301-5

J. Garcia-Bellido, D.G. Figueroa, and A. Sastre, Phys.
Rev. D 77, 043517 (2008).

L.R. Price and X. Siemens, Phys. Rev. D 78, 063541
(2008).

J.F. Dufaux, G. Felder, L. Kofman, and O. Navros,
J. Cosmol. Astropart. Phys. 03 (2009) 001.

K. Engqvist, A. Jokinen, A. Mazumdar, T. Multamaki, and
A. Vaihkonen, Phys. Rev. Lett. 94, 161301 (2005).

A. Jokinen and A. Mazumdar, J. Cosmol. Astropart. Phys.
04 (2006) 003.

N. Barnaby and J.M. Cline, Phys. Rev. D 75, 086004
(2007).

A. Chambers and A. Rajantie, Phys. Rev. Lett. 100,
041302 (2008); A. Chambers and A. Rajantie, Phys.
Rev. Lett. 101, 149903(E) (2008).

J.R. Bond, A. V. Frolov, Z. Huang, and L. Kofman, Phys.
Rev. Lett. 103, 071301 (2009).

N. Barnaby, Phys. Rev. D 82, 106009 (2010).

M. A. Amin, R. Easther, H. Finkel, R. Flauger, and M. P.
Hertzberg, Phys. Rev. Lett. 108, 241302 (2012).

M. A. Amin, Phys. Rev. D 87, 123505 (2013).


http://dx.doi.org/10.1103/PhysRevD.84.043528
http://dx.doi.org/10.1103/PhysRevD.84.043528
http://cosmo.kenyon.edu/gabe.html
http://dx.doi.org/10.1016/j.cpc.2008.02.009
http://dx.doi.org/10.1016/j.cpc.2008.02.009
http://dx.doi.org/10.1088/1475-7516/2008/11/009
http://dx.doi.org/10.1088/1475-7516/2010/10/025
http://dx.doi.org/10.1088/1475-7516/2010/10/025
http://dx.doi.org/10.1103/PhysRevD.83.123509
http://arXiv.org/abs/1303.5082
http://dx.doi.org/10.1088/1475-7516/2006/04/010
http://dx.doi.org/10.1088/1475-7516/2006/04/010
http://dx.doi.org/10.1103/PhysRevLett.99.221301
http://dx.doi.org/10.1103/PhysRevLett.99.221301
http://dx.doi.org/10.1103/PhysRevD.75.043518
http://dx.doi.org/10.1103/PhysRevLett.98.061302
http://dx.doi.org/10.1103/PhysRevLett.98.061302
http://dx.doi.org/10.1103/PhysRevD.77.103519
http://dx.doi.org/10.1103/PhysRevD.77.103519
http://dx.doi.org/10.1103/PhysRevD.76.123517
http://dx.doi.org/10.1103/PhysRevD.77.043517
http://dx.doi.org/10.1103/PhysRevD.77.043517
http://dx.doi.org/10.1103/PhysRevD.78.063541
http://dx.doi.org/10.1103/PhysRevD.78.063541
http://dx.doi.org/10.1088/1475-7516/2009/03/001
http://dx.doi.org/10.1103/PhysRevLett.94.161301
http://dx.doi.org/10.1088/1475-7516/2006/04/003
http://dx.doi.org/10.1088/1475-7516/2006/04/003
http://dx.doi.org/10.1103/PhysRevD.75.086004
http://dx.doi.org/10.1103/PhysRevD.75.086004
http://dx.doi.org/10.1103/PhysRevLett.100.041302
http://dx.doi.org/10.1103/PhysRevLett.100.041302
http://dx.doi.org/10.1103/PhysRevLett.101.149903
http://dx.doi.org/10.1103/PhysRevLett.101.149903
http://dx.doi.org/10.1103/PhysRevLett.103.071301
http://dx.doi.org/10.1103/PhysRevLett.103.071301
http://dx.doi.org/10.1103/PhysRevD.82.106009
http://dx.doi.org/10.1103/PhysRevLett.108.241302
http://dx.doi.org/10.1103/PhysRevD.87.123505

