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We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a

negative cosmological constant, in dþ 1 spacetime dimensions at spherical symmetry, both perturbatively

and numerically. We estimate the convergence radius of the formally obtained perturbative series and

argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence

domain of our numerical method and the threshold for the black-hole formation. Then we confirm our

results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the

constructed time-periodic solutions.
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Introduction.—A recent numerical and analytical study
of the four dimensional spherically symmetric Einstein-
massless scalar field equations with a negative cosmologi-
cal constant indicated that anti–de Sitter (AdS) space
is unstable against the formation of a black hole under
arbitrarily small generic perturbations [1]. Qualitatively,
the same results were obtained later in higher dimensions
[2,3]. Although gravitational collapse seems to be a gene-
ric fate of a small perturbation of AdS, it was suggested
in [1] that there may exist nongeneric initial data for which
the evolution remains globally regular in time. This con-
jecture was later generalized to the vacuum Einstein equa-
tions with a negative cosmological constant [4,5], where
time-periodic solutions (geons) were postulated. In this
Letter, continuing the study initiated in [1], we give strong
evidence for the existence of time-periodic solutions of
the spherically symmetric Einstein-massless scalar field
equations with a negative cosmological constant in dþ 1
dimensions for any d � 2. We construct these solutions
using two independent methods: nonlinear perturbative
expansion and fully nonlinear numerical evolution. The
fact that these two methods produce the same solutions
make us feel confident in our results. In the case of even d,
the perturbative construction of time-periodic solution can
be algorithmized with the highest order of the expansion
limited only by the memory resources of a computer on
which our MATHEMATICA script is running. The case of odd
d is more involved due to incompatibility between the
boundary behavior of the eigenmodes of the linearized
problem and the solutions of the full system and its pertur-
bative treatment will not be discussed here (a time-periodic
solution can still be constructed with a slightly different
method [6]). On the other hand, our numerical method for
constructing time-periodic solutions works for any d � 2.

After constructing the time-periodic solutions, we check
our results through direct numerical evolution of their
initial data. The fact that this numerical evolution repro-
duces those time-periodic solutions serves as another
cross-check of our results but, even more importantly, it

is a strong evidence that these time-periodic solutions are
(nonlinearly) stable. Thus, an interesting picture of dynam-
ics in asymptotically AdS space emerges: although AdS
space is generically unstable against black hole formation,
it also possesses islands of stability. This picture was
previously advocated in [5].
It is well known that, in asymptotically flat spacetimes,

there are no nontrivial time-periodic solutions [7,8].
The mechanism that allows for a nontrivial time-periodic
solution in our case is the lack of dissipation of energy.
The existence of stable time-periodic solutions of the

Einstein equations with a negative cosmological constant
is interesting in its own right, but it would also be fascinat-
ing to learn what the counterpart of their stability islands on
the gauge theory side is, using AdS/CFT correspondence.
The finite difference code used in [1] was well suited

to perform stable, long-time evolution for the initial data
that ultimately collapsed to a black hole, but in the case of
solutions that stay smooth forever (like time-periodic so-
lutions) spectral methods are more efficient and moreover
they also allow for a direct comparison with perturbative
construction of time-periodic solutions. Thus, we construct
a pseudo-spectral code that is well suited to deal with the
problem at hand.
Finally, let us mention that the time-periodic solutions

we construct form a particular class of time-periodic
solutions with one dominant mode. Whether other time-
periodic solutions, that do not bifurcate from one-mode
solutions of the linearized problem, exist or not is an open
question.
In this Letter, we deal with the simplest model case

of the self-gravitating massless scalar field, but the
methods presented here can also be applied (with minor
modifications) to the pure vacuum case, at least for the
cohomogeneity-two Bianchi IX ansatz in an even number
of spatial dimensions, discussed in [9].
Model.—To make this Letter self-contained, we rewrite

the equations for the self-gravitating massless scalar
field with a negative cosmological constant from [1,2].
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We parametrize the (dþ 1)—dimensional asymptotically
AdS metric by the ansatz

ds2 ¼ ‘2

cos2x
ð�Ae�2�dt2 þ A�1dx2 þ sin2x d�2

d�1Þ; (1)

where ‘2 ¼ �dðd� 1Þ=ð2�Þ, d�2
d�1 is the round metric

on Sd�1,�1< t <1, 0�x<�=2, and A, � are functions
of (t, x). For this ansatz, the evolution of a self-gravitating
massless scalar field �ðt; xÞ is governed by the following
system (using units where 8�G ¼ d� 1)

_� ¼ ðAe���Þ0; _� ¼ 1

tand�1x
ðtand�1xAe���Þ0; (2)

�0 ¼ � sinx cosxð�2 þ�2Þ; (3)

A0 ¼ d� 2þ 2sin2x

sinx cosx
ð1� AÞ þ A�0; (4)

where _¼ @t,
0 ¼ @x, and

� ¼ �0; � ¼ A�1e� _�: (5)

Note that the length scale ‘ drops out from the equations.
The key point is to note that, in this particular gauge, both
constraint equations (3) and (4) can be put in the form that
allows for efficient integration. This idea was previously
exploited in [10] for the efficient parallelization in solving
the constraints in a finite difference code, but here, we will
use this form to construct a spectral code and to find the
time-periodic solutions of the system both perturbatively
and numerically. For a given matter content, prescribed
with the functions � and � treated as independent dyna-
mical variables, the metric function � can be expressed as
the integral

� ¼ �
Z x

x0

siny cosyð�2ðt; yÞ þ�2ðt; yÞÞdy; (6)

where the value of x0 reflects the residual gauge choice in
(1). The choice x0¼0makes the time coordinate t to be the
proper time of the central observer. We also rewrite (4) as

�
sind�2x

cosdx
A

�0 �
�
sind�2x

cosdx
A

�
�0 ¼

�
sind�2x

cosdx

�0
; (7)

which multiplied by e�� and integrated by parts yields

1�A¼ e�
cosdx

sind�2x

�
Z x

0
e��ðt;yÞð�2ðt; yÞ þ�2ðt; yÞÞtand�1ydy: (8)

It is also convenient to rewrite the wave equation (2)

eliminating A0 and �0 in the equation for _�, using the
constraint equations (3) and (4). In this way, we get

_� ¼ e��

�
�0Aþ�

d� 1� ð1� AÞ cos2x
sinx cosx

�
: (9)

The set of Eqs. (9), (5), (6), and (8) forms a closed system
in the form well suited for the numerical integration.
Linear perturbations.—The spectrum of the linear

self-adjoint operator, which governs linearized perturba-
tions of AdSdþ1, L ¼ �ðtanxÞ1�d@xððtanxÞd�1@xÞ, is given
by !2

j ¼ ðdþ 2jÞ2, j ¼ 0; 1; . . . . The eigenfunctions read

ejðxÞ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!ðjþd�1Þ!p
�ðjþ d

2Þ
ðcosxÞdPðd=2�1;d=2Þ

j ðcos2xÞ; (10)

where Pð�;�Þ
j ðxÞ are the Jacobi polynomials. These

eigenfunctions form an orthonormal base in the Hilbert
space of functions L2ð½0; �=2�; tand�1xdxÞ. Below we

denote the inner product on this Hilbert space by ðfjgÞ :¼R�=2
0 fðxÞgðxÞtand�1xdx. It will be useful in the following

to note that ðe0iðxÞje0jðxÞÞ ¼ !2
j�ij.

Perturbative construction of a time-periodic solution.—
We seek a time-periodic solution of the system (2)–(4) in
the form

� ¼ " cosð�Þe�ðxÞ þ
X

odd ��3

"���ð�; xÞ; (11)

�¼ X
even��2

"���ð�;xÞ; 1�A¼ X
even��2

"�A�ð�;xÞ; (12)

where e�ðxÞ is a dominant mode in the solution in the limit

" ! 0, � ¼ ��t is the rescaled time variable with

�� ¼ !� þ X
even ��2

"�!�;�; (13)

and

�� ¼ X
j

f�;jð�ÞejðxÞ; (14)

�� ¼ d�;�1ð�Þ þ
X
j

d�;jð�ÞejðxÞ;

A� ¼ X
j

a�;jð�ÞejðxÞ;
(15)

with f�;jð�Þ, a�;jð�Þ, d�;jð�Þ being periodic in �. It is

important to note that, for even d, the sums in (14) and
(15) are finite at each order � of the perturbative expan-
sions (11) and (12). This allows for a straightforward
algorithmization of building up the successive terms in
(11) and (12). That is not the case for odd d. This is
due to the boundary expansion of the solutions of the
system (2)–(4). Smoothness at spatial infinity and finite-
ness of the total massM [11] imply that, near x ¼ �=2, we
must have (using 	 ¼ �=2� x)

�ðt; xÞ ¼ Oð	dÞ; Aðt; xÞ ¼ 1þOð	dÞ;
�0ðt; xÞ ¼ Oð	2d�1Þ: (16)

It can be checked that for odd d, higher even terms in the
expansion of � at the boundary x ¼ �=2 do not vanish
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[12] and �� does not have finite expansion into eigen-
modes ejðxÞ, being (in odd d) odd, with respect to x ¼
�=2. For later convenience it is useful to introduce the
following notation: let ½"��f denote the coefficient at "� in
the (formal) power series expansion of f ¼ P

�f�"
�. Now,

inserting the first of the series in (12) and (15) into (3) and
projecting onto e0kðxÞ, we get

d�;k ¼ � 1

2!2
k

ðe0kj½"�� sinð2xÞð�2 þ�2ÞÞ; (17)

and d�;�1ð�Þ is fixed by the gauge fixing condition

��ð�; 0Þ ¼ 0. Similarly, inserting the last of the series in
(12) and (15) into (7) and projecting onto ekðxÞ, we get a
linear system of equations for the coefficients a�;jð�Þ
X
j

�
ðd� 1Þ�kj þ

�
ek

��������
1

2
sin2xe0j � cos2xej

��
a�;j

¼ 1

4
ðekj½"��ðsin2xÞ2Að�2 þ�2ÞÞ: (18)

It is useful to note that the principal matrix of this system
is tridiagonal. This system supplied with the ½"���
ð1� AÞjx¼0 ¼ 0 ¼ P

ja�;jejð0Þ condition allows for the

unique solution for the coefficients a�;jð�Þ. Then, for odd
� � 3, one gets that �� fulfills an inhomogeneous wave
equation on the pure AdS background: ð!2

�@�� þ LÞ�� ¼
S�. Projecting this equation onto ek one finds that the
coefficients f�;k in (14) behave as forced harmonic oscil-

lators: ð!2
�@�� þ!2

kÞf�;k ¼ ðekjS�Þ. Solving these, we get

two integration constants for each of the equations. The two
constants in f�;� [the coefficient for the dominant mode e�
in (14)], are fixed with the condition ðf�;�; @�f�;�Þj�¼0 ¼
ð0; 0Þ, that is, we choose ½ðe�j�Þ; ðe�j@��Þ�j�¼0 ¼ ð"; 0Þ.
Now, if (ekjS�) contains the resonant terms cosð!k=!�Þ�
or sinð!k=!�Þ�, this gives rise to secular terms

� sinð�!k=!�Þ and � cosð�!k=!�Þ in f�;k, respectively.

Such terms would spoil the periodicity of the solution;
thus, they have to be removed. This fixes the correction
to the frequency !�;��1, and the integration constants.

Namely, it turns out that in order not to produce spurious
resonant terms in higher orders, all but odd (in �) freq-
uencies in the solutions for f�;k have to be removed and

moreover, all f�;k tune in phase to the dominant mode:

@�f�;kj�¼0 ¼ 0 (for the choice @�f�;�j�¼0 ¼ 0). In sum-

mary, at any odd � � 3 we fix !�;��1 and, as (ekjS�) does
not vanish only for a finite number of modes (namely
ðekjS�Þ � 0 for k > �þ ðdþ 1þ 2�Þð�� 1Þ=2), we are
left with ð�� 1Þ=2þ bð�� 1Þ=½2ðdþ 2�Þ�c undetermined
integration constants. They will be fixed, together with
!�;�þ1, to remove ð�þ1Þ=2þbð��1Þ=½2ðdþ2�Þ�c secular
terms in ��þ2.

In fact, all the projections onto ek (or e0k) appearing at

any order of the perturbative procedure described above,
can be reduced to just a few inner products: (ekjeiej),

(ekj cos2xei), (ekj sin2xe0i), (ekj cscx secx cos2xeie0j),
(ekj cscx secxeie0j). Thus, the whole procedure of building
up such a perturbative solution is straightforward to
implement.
Pseudospectral code for the time evolution.—We expand

� and � into K eigenmodes of linearized problem (10)

� ¼ X
0�j<K

fjðtÞejðxÞ; � ¼ X
0�j<K

pjðtÞejðxÞ: (19)

Prescribing the coefficients fjðtÞ, pjðtÞ at time t, we want

to solve for them at a later time tþ dt. To achieve that, we

calculate their time derivatives _fjðtÞ and _pjðtÞ with a

spectral method and then integrate them in time. We
know that the metric function � and the integrand in (8)
can be efficiently [13] expanded as follows:

� ¼ X
0�j<K

djðtÞ cosð2jxÞ; (20)

e��ð�2 þ�2Þ ¼ X
0�j<K

ujðtÞ cosð2jxÞ: (21)

Substituting (20) into (3), we getX
1�j<K

ð�2jÞ sinð2jxÞdjðtÞ ¼ � sinx cosxð�2 þ�2Þ: (22)

When the sides of (22) are evaluated at K collocation
points, xk ¼ ð�=2Þk=ðK þ 1Þ, k ¼ 1; . . . ; K, we get the
linear system of equations to be solved for the coefficients
djðtÞ. As d0ðtÞ is absent in this system, reflecting the gauge

freedom, we add the gauge fixing condition �ðt;0Þ¼P
0�j<KdjðtÞ¼0. Then, evaluating the sides of (21) at the

collocation points, we get the linear system of equations to
be solved for the coefficients ujðtÞ. This allows us to solve

for the metric function A. Using (8), we get

A ¼ 1� e�
cosdx

sind�2x

X
0�j<K

wðdÞ
j ðxÞujðtÞ; (23)

where the weight functions wðdÞ
j ðxÞ read

TABLE I. Coefficients of the expansion (19) at t ¼ 0 [with
pjð0Þ � 0], corresponding to the time-periodic solution with

dominant eigenmode � ¼ 0, with the amplitude " ¼ 1=100,
determined by the numerical procedure with K � N ¼
64� 24 grid points and extended floating-point precision. The
solution oscillates with frequency � � 4:00667.

j fjð0Þ j fjð0Þ j fjð0Þ
0 0.01 5 6:82972� 10�9 10 1:95754� 10�14

1 1:04021� 10�5 6 4:91226� 10�11 11 3:26051� 10�16

2 1:68282� 10�6 7 6:71227� 10�12
..
. ..

.

3 2:09044� 10�7 8 8:72677� 10�13

4�1:65282� 10�9 9 2:74313� 10�14 63 2:31645� 10�69
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wðdÞ
j ðxÞ ¼

Z x

0
cosð2jyÞtand�1ydy:

Now, substituting the expansions (19) into wave equation
(9) and (5) and evaluating both sides at the collocation
points, we get the linear system of equations to be solved

for the time derivatives _fjðtÞ and _pjðtÞ.
Numerical construction of time-periodic solutions.—

Seeking numerically for time-periodic solutions, it is con-
venient to use the rescaled time coordinate � ¼ �t where,
as in the perturbative construction, � denotes the fre-
quency of the solution we are looking for. Assuming that
a time-periodic solution does exist, we expand �ðt; xÞ and
�ðt; xÞ into eigenmodes of the linearized problem in space
and Fourier coefficients in time. Choosing a grid with K
collocation points xk ¼ ð�=2Þk=ðK þ 1Þ, k ¼ 1; . . . ; K in
space (as for the spectral code) and N collocation points in
time �n ¼ �ðn� 1=2Þ=ð2N þ 1Þ, n ¼ 1; . . . ; N, we trun-
cate these expansions as follows:

� ¼ X
0�i<N

X
0�j<K

fi;j cos½ð2iþ 1Þ��ejðxÞ; (24)

� ¼ X
0�i<N

X
0�j<K

pi;j sin½ð2iþ 1Þ��ejðxÞ: (25)

Next, at each instant of time �n, we calculate the
coefficients

fjðtnÞ ¼
X

0�i<N

fi;j cos½ð2iþ 1Þ�n�;

pjðtnÞ ¼
X

0�i<N

pi;j sin½ð2iþ 1Þ�n�;

and put them as an input to our spectral procedure, getting,

as the output, their time derivatives _fjðtnÞ and _pjðtnÞ.
Equating those to the time derivatives of (24) and (25)
(remembering that @t ¼ �@�) at the set of K � N grid
points (�n, xk), together with the equation

P
0�i<Nfi;� ¼

", setting the amplitude of the dominant mode � in the
initial data to ", we get a nonlinear system of 2� K �
N þ 1 equations for 2� K � N þ 1 unknowns: fi;j, pi;j,

and �. This system is solved with the Newton-Raphson
algorithm yielding the time-periodic solution for the
system (2)–(4).
Results.—The detailed results obtained with the tools

described above will be given in a longer accompanying
paper. Here, just to give an example, we present the time-
periodic solution bifurcating from the fundamental mode
(as a dominant one) in 4þ 1 dimensions. First, we con-
struct the time-periodic solution with a numerical proce-
dure described above. Then, we read off the coefficients
of the expansion (19) at t ¼ 0 (see Table I) and put them
as the initial data into our spectral evolution code. Despite
the presence of truncation errors and numerical noise in
these initial data, their time evolution is periodic in time,
as depicted by closed loops in Fig. 1 representing different
sections of the phase space, spanned by the set of coef-
ficients ffjðtÞ; pkðtÞg. This provides strong evidence not

only for the existence of the time-periodic solutions but
also for their (nonlinear) stability. This argument for the
stability is strengthened by the fact that if we perturb
the time-periodic solution slightly, then its evolution is
no longer periodic, but it does not collapse to a black hole

4.9 1011 4.9 10110
4.7 1013

4.7 1013

0

f6

p 1
0

2. 1014 2. 10140
4.7 1013

4.7 1013

0

f10

p 1
0

FIG. 1 (color online). The phase space generated by time
evolution of initial data listed in Table I. All plots depict the
same solution evolved over time interval equal to 500 periods.
Closed curves on the slices of phase space give a strong
argument for the stability of analyzed solution.

TABLE II. Frequency of solutions with � ¼ 0 determined by: direct summation of the
perturbative expansion �� (26), diagonal (8,8) Padé resummation �Pad�e and the numerical
code�num. The relative absolute difference of�num and�Pad�e ranges from 10�28 for " ¼ 0:005
to 4� 10�3 for " ¼ 0:085.

" �� �Pad�e �num

0.005 4.001 659 666 650 1 4.001 659 666 650 1 4.001 659 666 650 1

0.015 4.015 122 074 146 2 4.015 122 074 146 2 4.015 122 074 146 2

0.025 4.043 086 783 846 0 4.043 086 783 852 1 4.043 086 783 852 1

0.035 4.087 919 700 7 4.087 919 703 543 5 4.087 919 703 544 8

0.045 4.154 071 39 4.154 071 679 53 4.154 071 679 744 0

0.055 4.249 920 4.249 932 516 4.249 932 533 627 9

0.065 4.392 67 4.392 992 8 4.392 993 855 609 9

0.075 4.6230 4.629 225 4.629 296 226 971 2

0.085 5.05 5.18 5.201 771 469 418 3
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and stays close to the periodic orbit. Using the perturba-
tive method, for small values of ", we get fast conver-
gence to the numerical solution; for larger ", the
convergence can be improved with the Padé resummation

(see Table II). The Padé approximation can also be used to
estimate the convergence radius for perturbative expan-
sions (11)–(13). For example, if we construct the (n, n)
Padé approximants for

��¼0 ¼ 4þ 464

7
"2 þ 45 614 896

11 319
"4 þ 173 158 711 507 904 383 595 696

533 797 475 350 414 275
"6

þ 19 627 018 631 453 126 466 665 156 076 805 265 104

662 148 921 092 395 909 349 993 941 125
"8 þOð"10Þ; (26)

with n ¼ 2, 4, 6, 8 [14], and then calculate the zeros of the
denominators nearest to the origin, we get 0.128, 0.102,
0.095, and 0.092, respectively. These values are consistent
with the fact that the Newton-Raphson algorithm used in
the numerical construction of time-periodic solutions
ceases to converge for " * 0:09. Moreover, if we read
off the initial data for larger values of ", the time evolution
leads to a black hole formation almost immediately.
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