
Universal Superfluid Transition and Transport Properties of Two-Dimensional Dirty Bosons
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We study the phase diagramof two-dimensional, interacting bosons in the presence of a correlated disorder

in continuous space, by using large-scale quantum Monte Carlo simulations at finite temperature. We show

that the superfluid transition is strongly protected against disorder. It remains of the Berezinskii-Kosterlitz-

Thouless type up to disorder strengths comparable to the chemical potential.Moreover, we study the transport

properties in the strong disorder regimewhere a zero-temperatureBose-glass phase is expected.We show that

the conductance exhibits a thermally activated behavior vanishing only at zero temperature. Our results point

towards the existence of a Bose bad-metal phase as a precursor of the Bose-glass phase.

DOI: 10.1103/PhysRevLett.111.050406 PACS numbers: 05.30.Jp, 02.70.Ss, 67.25.dj, 72.15.Rn

Transport properties in quantum materials are governed
by a complex interplay of disorder and interactions. While
disorder tends to localize particles, interactionsmay strongly
alter the single-particle picture by either reinforcing or
suppressing localization. Dramatic effects are expected
in two dimensions (2D), such as metal-insulator transitions
[1–3], suppression of superfluidity [4–8], and presumably
high-Tc superconductivity [9]. Possible phase transitions
are, however, particularly elusive owing to the absence of
true long-range order even in extended phases [10,11], and
many questions remain open. For instance, resistance
measurements in Si-MOSFETs suggest a metal-insulator
transition [1], which may be attributed to quantum localiza-
tion or classical percolation [2], but experiments on GaAs
heterostructures point towards a crossover behavior [3].
Studies of the superfluid Berezinskii-Kosterlitz-Thouless
(BKT) transition [12,13] have also been reported for 4He
films adsorbed on porous media [4,5]. While the BKT
transition is unaffected in the weak disorder limit [14], the
question of its relevance for strong disorder is left open
owing to the difficulty to identify a universal jump of the
superfluid density [6–8]. Moreover, a question that is attract-
ing much debate is whether many-body localization effects
[15–19] can drive a finite-temperature metal-insulator tran-
sition in two dimensions.

Ultracold quantum gases in controlled disorder offer a
unique tool to address these questions in a unified way
[20]. In clean or disordered quasi-2D geometries, direct
consequences of vortex pairing [21], superfluidity [22],
quasi-long-range phase coherence [23,24], and resistance
measurements [25] have been reported. On the theoretical
side, most knowledge relies on lattice models with uncor-
related disorder [26–31]. Conversely, little is known when
the disorder is continuous, is correlated, and can sustain a
classical percolation threshold. An important class of such
models is the one realized by optical speckle potentials
used in recent ultracold-atom experiments [32–36].

In this Letter, we report on an ab initio path-integral
quantumMonte Carlo study of the phase diagram of interact-
ing 2D bosons in the presence of a speckle-type disorder. We
show that, although the density profile exhibits large spatial
modulations, the superfluid BKT transition is strongly pro-
tected against disorder. This holds up to disorder strengths
comparable to the chemical potential, where the zero-
temperature Bose-glass transition is expected. The critical
properties of the dirty superfluid transition can be understood
in terms of a universal description including a simple renor-
malization of the critical parameters. In particular, we find
that the superfluid transition occurs while the fluid percolates
with a density significantly above the critical density of the
clean system. It allows us to rule out the classical percolation
scenario. Moreover, we study the conductance by means of a
novel quantum Monte Carlo estimator. Deep in the strong
disorder regime, we find direct evidence of an insulating
behavior, characterized by a conductance that decreases
with temperature. Our data are consistent with a thermally
activated behavior of the Arrhenius type, indicating that the
conductance vanishes only at zero temperature.
System and methods.—We consider a two-dimensional

quantum fluid of interacting bosons of mass m at tempera-
ture T subjected to a disordered potential VðrÞ, governed
by the Hamiltonian

H ¼ X
i

�
�r2

i

2m
þ VðriÞ

�
þX

i<j

uðri � rjÞ: (1)

The properties of the short-range repulsive interaction
potential uðrÞ used in ultracold-atom experiments can be
accurately described by an s-wave pseudopotential with
an effective coupling strength g [37,38]. The disordered
potential we take is a correlated, isotropic, and continuous
speckle potential, as realized by laser light diffusion
through a ground-glass plate [23–25,32]. Its average value
coincides with its standard deviation VR, and its two-point
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correlation function is a Gaussian of rms radius�R [39,40].
In the following, we consider an interaction strength
~g�mg=@2¼0:1, a fixed chemical potential �, and a cor-

relation radius �R ¼ ffiffiffi
5

p
�0, where �0 ¼ @=

ffiffiffiffiffiffiffiffiffiffiffi
2m�

p
is the

healing length in the absence of disorder. These are typical
values realized in ultracold-atom experiments [23,24]. For
instance, for 87Rb atoms the chosen chemical potential
corresponds to �=kB ’ 56 nK and �R ¼ 0:5 �m.

Our study is based on a fully ab initio path-integral
quantum Monte Carlo (QMC) approach, which allows for
unbiased calculations of equilibrium, finite-temperature
properties of interacting bosons [41] in terms of a discre-
tized path-integral representation using M time slices. We
use the worm algorithm [42] to sample the grand-canonical
partition function at inverse temperature � ¼ 1=kBT.
Whereas disorder is taken into account at the level of the
primitive approximation, the two-body interaction is treated
in the pair-product approximation [41,43]. The two-particle
propagator is derived by solving the s-wave scattering
problem at high temperatures, "�1 ¼ MkBT, which yields

hrje�"H2 jr0i ’ m

4�@2"
e�mjr�r0j2=4@2"þ ~g

8�

Z 1

0
dkke�"ð@2k2=mÞ

� ½J0ðkrÞY0ðkr0Þ þ J0ðkr0ÞY0ðkrÞ�; (2)

where H2 is the Hamiltonian of the relative motion of
two particles and r and r0 are the relative coordinates at
different times, whereas J0 and Y0 are Bessel functions of
the first and second kind, respectively.Contributions of higher
(l > 0) partial waves to the two-particle density matrix are
approximated by their noninteracting expressions. Here, we
report results from simulations of up toN ¼ 105 particles in a
box of linear extension L with periodic boundary conditions,
averaged over� 40 disorder realizations. The typical number
of time slices usedherevaries fromM ¼ 16 forweakdisorder
toM ¼ 70 for strong disorder amplitudes.

Superfluid transition.—We first study the superfluid to
normal fluid transition in the presence of disorder. To
elucidate the critical properties of this transition, we cal-
culate the static superfluid susceptibility �s¼ð1=L2Þ�R
drdr0h�yðrÞ�ðr0Þi and the field correlation function

g1ðrÞ ¼ h�yðrÞ�ð0Þi, where � is the field operator and
h. . .i denotes thermal and disorder average. In the
superfluid phase of the clean system, the decay of field
correlations is algebraic, g1ðrÞ � r��, and the superfluid
susceptibility diverges as �s � L2��. The exponent � is
directly related to the superfluid density ns as � ¼
ðmkBTÞ=ð2�@2nsÞ. In the normal phase, field correlations

are exponentially suppressed, g1ðrÞ � e�r=�, and the sus-
ceptibility remains finite in the thermodynamic limit.

Analysis of our QMC data allows us to study both quali-
tatively and quantitatively the superfluid to normal transition
in the presence of disorder (Fig. 1). The inset in Fig. 1 shows
the superfluid susceptibility �s as a function of the system
size for various temperatures at intermediate disorder ampli-
tude VR=� ¼ 0:3. For high temperatures [curves in the
lower (light-orange) zone], �s converges to a finite value,

characteristic for the normal fluid phase. Above the critical
temperature [curves in the upper (blue) zone], �s shows an
algebraic divergence. At the critical point, our QMC results

are compatible with the scaling �s�L7=4, i.e., � ’ 1=4, as
expected for the BKT transition in the clean system [12,13].
It is confirmed by the behavior of the rescaled superfluid

susceptibility�s=L
7=4, plotted in themain panel of Fig. 1 as a

function of temperature for various values of L, where all
curves cross nearly at a single point. Furthermore, our data
for the superfluid density calculated from the winding num-
ber estimator [41] (not shown) are consistent with the
universal jump at the transition temperature in the thermody-
namic limit, expected for a BKT transition.We conclude that
the superfluid transition of dirty bosons remains in the uni-
versality class of the clean BKT transition. To some extent,
this result is expected for weak disorder. According to the
Harris argument [14], local fluctuations of the disorder po-
tential are smoothed out at the scale of the diverging corre-
lation length at the BKT transition, thus introducing only a
renormalization of the effective parameters. Our calculations
show that it holds also for strong disorder (up to VR ’ �).
The intersection point of the rescaled superfluid suscep-

tibility (curves as in Fig. 1) precisely determines the
transition temperature at fixed disorder amplitude. In our
analysis, we find that the BKT scaling regime is attained
for increasingly large system sizes, upon increasing the
disorder strength. It results in a residual size dependence of
the susceptibility intersection points. The latter is nonethe-
less well behaved and amenable for 1=L extrapolation of
the transition temperature in the thermodynamic limit. In
order to have sufficiently small finite-size corrections to the
BKT scaling, we use, for the largest disorder strength
reported, systems of linear size L=�R � 40–80. These
sizes should be contrasted with the typically (much)

FIG. 1 (color online). Scaled superfluid susceptibility against
temperature for system sizes in the range LR ¼ L=�R ¼ 5–40 at
disorder strength VR=� ¼ 0:3 and interaction strength ~g ¼ 0:1.
Darker curves mark increasingly large sizes. In the inset, the
susceptibility is shown as a function of LR (temperature increases
from top to bottom). The divergence predicted by the BKT tran-
sition for clean systems (� ¼ 1=4) is indicated by the dashed line.
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smaller ones of the inner critical regions probed in experi-
ments [6–8,23,24] and in some numerical simulations [44].

In Fig. 2, we show the resulting critical temperatures
versus disorder strength and draw the superfluid to normal
fluid phase diagram of dirty 2D bosons. Within numerical
accuracy, the critical line is described by TcðVRÞ ’ T0

c ð��
VRÞ, where T0

c ’ ð��Þ=ð~gkBÞ= logð13:2=~gÞ is the critical
temperature for the disorder-free system [45]. The shift of
the critical temperature can be understood in terms of the
leading order renormalization of the chemical potential,
�cðVRÞ � VR ¼ �cð0Þ. For our parameters, upon increas-
ing the disorder strength the critical density decreases from
the disorder-free value nc�

2
R ’ 21 to the zero-temperature

(VR ’ �) linearly extrapolated value of nc�
2
R’7. At lower

densities, the system remains normal for any of our tem-
peratures, kBT * �, consistent with a Bose-glass phase at
zero temperature, as indicated in Fig. 2.

We now compare our results to the possibility of a
percolation-driven transition, as occurring in classical sys-
tems and investigated both experimentally [46] and theoreti-
cally [33] for 2D speckle disorder. In the superfluid phase, the
Bose gas density for each realization of the disorder may be
approximated by using the local density approximation
(LDA): nLDAðr; VRÞ ¼ n0½�� VðrÞ�, where n0ð�Þ is the
density of the clean system at chemical potential �. The
quantitative agreement between this approximation and our
QMC results is reasonably good in the superfluid phase.
We consider percolating clusters in which the local density
stays everywhere higher than the critical density of the clean
system, i.e., nLDAðr;VRÞ*ðmkBTÞ=ð2�@2Þlogð380=~gÞ [45].
The occurrence of such percolating superfluid clusters yields
the dotted (orange) line reported in Fig. 2, which shows
that the percolation scenario strongly overestimates the criti-
cal disorder strength. Superfluidity disappears, while there
still exist large percolating clusters above the critical density

of the clean system.Notice that we have disregarded theweak
penetration of the density into the disorder potential
barriers due to the finite healing length in the superfluid phase
[47]. However, this effect does not alter the above conclu-
sions, since it would further raise the percolation line in Fig. 2.
Transport properties.—We now address the strongly

disordered regime, where superfluid coherence is lost and
disorder substantially affects mass transport. A long-
debated issue is to understand whether interacting systems
preserve Anderson-like localization properties, as found in
the single-particle case [15–19]. At zero temperature, the
conditions for a localized (Bose-glass) phase to exist have
been established in seminal works [48,49]. At finite tem-
perature, however, the existence of a perfectly insulating
state, characterized by an exactly vanishing conductance
(GDC ¼ 0), is intrinsically more complex, and theoreti-
cally plausible scenarios have been put forward only
recently. The many-body localization transition scenario
[15,19] implies the existence of a critical temperature Tloc

separating the perfect insulator behavior at low energies
where GDCðT < TlocÞ ¼ 0 from a delocalized, diffusive
phase with GDCðT > TlocÞ � 0. This transition, however,
has not been directly observed in experiments and remains
at the center of intense theoretical activity, for instance, in
out-of-equilibrium phenomena [50–52].
In order to identify possible signatures of many-body

localization at finite temperature, we have computed trans-
port properties in the strongly disordered region. Such
transport properties are traditionally addressed in disor-
dered materials subjected to an external electric bias.
They were recently shown to be also accessible in a new
generation of ultracold-atom experiments [25].
To obtain the zero-frequency (dc) conductance within the

QMC method, we compute the imaginary-time correlations
of the density current operator along a given direction 	,
�	ð
; qÞ ¼ hJ	ð
; qÞJ	ð0;�qÞi. It allows us to reconstruct
the associated longitudinal conductance Gregð!Þ [53] from
numerical analytical continuation [54–56] of the Laplace
transform [57]

�	ð
; 0Þ ¼ 2@
Z þ1

�1
d!

expð�@!
Þ!
1� expð�@!�ÞGregð!Þ: (3)

Imaginary-time correlations of high statistical quality are
essential for a reliable reconstruction of the dynamical
response Gregð!Þ. Direct estimators of current correlations

successfully used for lattice simulations [58,59] present a
diverging statistical error in the small imaginary-time step
limit in continuum systems, preventing its use for numerical
analytical continuation for our purposes. To overcome
this serious problem, we introduce a novel estimator that
significantly reduces the statistical error, making possible a
reliable determination of the conductance. The key obser-
vation is that the imaginary-time derivatives of the correla-
tions arewell behaved in the small time-step limit � ! 0 and
that the imaginary-time integral of the correlation function is
also well behaved and directly related to the superfluid

FIG. 2 (color online). Phase diagram of two-dimensional in-
teracting bosons at fixed chemical potential and interaction
strength ~g ¼ 0:1. The dark dashed line is the critical temperature
of the clean system with a renormalized chemical potential; the
lighter dashed line is the prediction of a combination of LDA and
percolation theory (see the text). For strong disorder, the normal
system goes to the Bose-glass phase in the zero-T limit.
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density ns [60].We can therefore express the current-current
correlations by means of the integral expression

�	ð
; 0Þ ¼ 1

�m
ðn� nsÞ þ

Z �

0
d
1�

0
	ð
1; 0Þ

� 1

�

Z �

0
d
1

Z 
1

0
d
2�

0
	ð
2; 0Þ; (4)

where the imaginary-time derivative of the correlation func-
tion reads

"�0
	ð
;0Þ¼ 1

mL2

X
i

h½r	
i Vð
Þ��D	ð0Þi

� 1

2mL2

X
i;j;�

hD�
j ð
Þ�½r	

i r�
j Vð
Þ��D	ð0ÞiþOð"3=2Þ:

(5)

In the latter expression, r	
i is the derivative with respect to

the position of the ith particle, D	ð
Þ ¼ P
N
j D	

j ð
Þ ¼P
N
j ½R	

j ð
Þ � R	
j ð
� �Þ� is proportional to the imaginary-

time displacement of the center of mass, and Vð
Þ is a
generic one-body potential which in our specific case is
the disordered speckle potential.

We first study the behavior of the dc longitudinal con-
ductance GDC ¼ Gregð! ¼ 0Þ versus the temperature deep

in the strong disorder regime. The outcome is shown in
the main panel of Fig. 3 for a fixed disorder strength
VR ¼ 2:4�. The conductance decreases monotonically
with temperature, a behavior which is typically observed
in related experiments with disordered materials. In the
zero-temperature limit, the longitudinal conductance is
consistent with a vanishing value, as expected for the
Bose-glass phase [49]. The overall behavior of GDC, how-
ever, points towards a thermally activated transport (see the

fit in Fig. 3), at variance with a perfectly insulating, many-
body localized phase at finite temperature, at least on the
temperature scale accessible in our study. The energy
broadening of the reconstructed dynamical conductances
(see the upper inset in Fig. 3) remains finite and does not
show any indication for a finite-temperature mobility edge.
In the lower inset in Fig. 3, we further show the behavior of

the longitudinal conductance at fixed temperature versus the
disorder strengthVR, ranging from the edge of the superfluid
transition VR �� to the strong disorder regime, with VR �
4�. Compatibly with the thermally activated scenario, we
find that the transport is exponentially suppressed with
increasing disorder but never vanishes, in agreement with
experimental results [25]. Size effects, though present, do not
indicate any phase transition, at least for mesoscopic
samples. Therefore, our ab initio analysis hints to a delocal-
ized bad Bose-metal phase at finite temperature.
Conclusions.—Wehave studied two-dimensional interact-

ing bosons in the presence of a correlated disordered potential
by using ab initio quantum Monte Carlo calculations. We
have found that the disorder renormalizes the low-energy
Hamiltonian in the neighborhood of the superfluid transition,
but the critical line remains in the universality class of the
Berezinskii-Kosterlitz-Thouless transition. It holds for arbi-
trary strong disorder up to the zero-temperature Bose-glass
transition. Moreover, we have developed a new estimator for
the conductance, which does not suffer from diverging sta-
tistical errors. Deep in the strong disorder regime, the mass
transport exhibits a thermally activated behavior, and it is
strictly suppressed only at zero temperature. It points towards
the existence of a Bose bad-metal phase, as the finite-
temperature precursor of the Bose-glass insulator. We have
found no indication of a finite-temperature many-body local-
ization transition. Our results provide new theoretical insights
both in the general understanding of disordered interacting
systems and in the interpretation of experiments with both
ultracold atoms and disordered materials.
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[33] L. Pezzé, M. Robert-de-Saint-Vincent, T. Bourdel,

J.-P. Brantut, B. Allard, T. Plisson, A. Aspect, P. Bouyer,
and L. Sanchez-Palencia, New J. Phys. 13, 095015 (2011).

[34] S. Pilati, S. Giorgini, and N. Prokof’ev, Phys. Rev. Lett.
102, 150402 (2009).

[35] S. Pilati, S. Giorgini, M. Modugno, and N. Prokof’ev,
New J. Phys. 12, 073003 (2010).

[36] T. Bourdel, Phys. Rev. A 86, 063626 (2012).
[37] D. S. Petrov, M. Holzmann, and G.V. Shlyapnikov,

Phys. Rev. Lett. 84, 2551 (2000).
[38] The effective two-dimensional coupling parameter in the

ultracold-atom experiment reads g ¼ ffiffiffiffiffiffiffi
8�

p ðas=azÞð@2=mÞ,
where as is the three-dimensional s-wave scattering length
and az ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!z

p
is the characteristic trapping length in

the transverse direction.
[39] J. Goodman, Speckle Phenomena in Optics: Theory and

Applications (Roberts and Company, Greenwood Village,
CO, 2007).

[40] The disordered potential is obtained as the square modulus
of the discrete Fourier transform of ð ffiffiffiffiffiffiffiffiffiffiffiffi

2�VR

p
=~�LÞ�

exp½�ðk2xþk2yÞ=ð4~�2Þþi�ðkx;kyÞ�, where ~�2 ¼ ð1=2�2
RÞ,

�ðkx; kyÞ is an uniformly distributed random phase, and L is
the linear size of the two-dimensional system. The wave
vectors are integer multiples of �k ¼ 2�=L, and we typi-
cally take �104 wave vectors along each spatial direction.

[41] D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
[42] M. Boninsegni, N. Prokof’ev, and B. Svistunov, Phys. Rev.

Lett. 96, 070601 (2006).
[43] W. Krauth, Phys. Rev. Lett. 77, 3695 (1996).
[44] G. E. Astrakharchik, K. V. Krutitsky, and P. Navez, Phys.

Rev. A 87, 061601(R) (2013).
[45] N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Phys.

Rev. Lett. 87, 270402 (2001).
[46] L. N. Smith and C. J. Lobb, Phys. Rev. B 20, 3653 (1979).
[47] L. Sanchez-Palencia, Phys. Rev. A 74, 053625 (2006).
[48] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325

(1988).
[49] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 (1989).
[50] E. Canovi, D. Rossini, R. Fazio, G. E. Santoro, and A.

Silva, Phys. Rev. B 83, 094431 (2011).
[51] G. Carleo, F. Becca, M. Schiro, and M. Fabrizio, Sci. Rep.

2, 243 (2012).
[52] E. Canovi, D. Rossini, R. Fazio, G. E. Santoro, and A.

Silva, New J. Phys. 14, 095020 (2012).
[53] Notice that we refer here to mass transport. The conven-

tional electric conductance is ~Gregð!Þ ¼ q2Gregð!Þ for
particles of charge q.

[54] A.W. Sandvik, Phys. Rev. B 57, 10 287 (1998).
[55] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia,

Phys. Rev. B 44, 6011 (1991).
[56] G. Carleo, S. Moroni, and S. Baroni, Phys. Rev. B 80,

094301 (2009).
[57] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[58] D. J. Scalapino, S. R. White, and S. Zhang, Phys. Rev. B

47, 7995 (1993).
[59] N. Trivedi, R. T. Scalettar, and M. Randeria, Phys. Rev. B

54, R3756 (1996).
[60] E. L. Pollock and D.M. Ceperley, Phys. Rev. B 36, 8343

(1987).
[61] http://alps.comp-phys.org/.
[62] M. Troyer, B. Ammon, and E. Heeb, Lect. Notes Comput.

Sci. 1505, 191 (1998).
[63] A. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187

(2007).
[64] B. Bauer et al., J. Stat. Mech. (2011) P05001.

PRL 111, 050406 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

2 AUGUST 2013

050406-5

http://dx.doi.org/10.1103/PhysRevLett.96.216407
http://dx.doi.org/10.1103/PhysRevLett.75.1106
http://dx.doi.org/10.1103/PhysRevLett.75.1106
http://dx.doi.org/10.1103/PhysRevB.55.12620
http://dx.doi.org/10.1103/PhysRevB.55.12620
http://dx.doi.org/10.1103/PhysRevLett.93.086106
http://dx.doi.org/10.1103/PhysRevLett.93.086106
http://dx.doi.org/10.1103/PhysRevB.74.014510
http://dx.doi.org/10.1103/PhysRevB.74.014510
http://dx.doi.org/10.1103/PhysRevB.74.024512
http://dx.doi.org/10.1103/PhysRevB.74.024512
http://dx.doi.org/10.1038/35095012
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevLett.99.180402
http://dx.doi.org/10.1103/PhysRevA.84.013612
http://dx.doi.org/10.1103/PhysRevA.84.013612
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1088/1367-2630/14/7/073024
http://dx.doi.org/10.1103/PhysRevA.85.033602
http://dx.doi.org/10.1103/PhysRevA.85.033602
http://dx.doi.org/10.1103/PhysRevLett.110.100601
http://dx.doi.org/10.1103/PhysRevE.67.015701
http://dx.doi.org/10.1103/PhysRevLett.92.015703
http://dx.doi.org/10.1103/PhysRevLett.92.015703
http://dx.doi.org/10.1103/PhysRevB.72.094418
http://dx.doi.org/10.1103/PhysRevLett.107.185301
http://dx.doi.org/10.1103/PhysRevB.84.094507
http://dx.doi.org/10.1103/PhysRevB.84.094507
http://arXiv.org/abs/1304.7636
http://dx.doi.org/10.1088/1367-2630/8/8/165
http://dx.doi.org/10.1088/1367-2630/13/9/095015
http://dx.doi.org/10.1103/PhysRevLett.102.150402
http://dx.doi.org/10.1103/PhysRevLett.102.150402
http://dx.doi.org/10.1088/1367-2630/12/7/073003
http://dx.doi.org/10.1103/PhysRevA.86.063626
http://dx.doi.org/10.1103/PhysRevLett.84.2551
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/PhysRevLett.96.070601
http://dx.doi.org/10.1103/PhysRevLett.96.070601
http://dx.doi.org/10.1103/PhysRevLett.77.3695
http://dx.doi.org/10.1103/PhysRevA.87.061601
http://dx.doi.org/10.1103/PhysRevA.87.061601
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1103/PhysRevB.20.3653
http://dx.doi.org/10.1103/PhysRevA.74.053625
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevB.37.325
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.83.094431
http://dx.doi.org/10.1038/srep00243
http://dx.doi.org/10.1038/srep00243
http://dx.doi.org/10.1088/1367-2630/14/9/095020
http://dx.doi.org/10.1103/PhysRevB.57.10287
http://dx.doi.org/10.1103/PhysRevB.44.6011
http://dx.doi.org/10.1103/PhysRevB.80.094301
http://dx.doi.org/10.1103/PhysRevB.80.094301
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1103/PhysRevB.47.7995
http://dx.doi.org/10.1103/PhysRevB.47.7995
http://dx.doi.org/10.1103/PhysRevB.54.R3756
http://dx.doi.org/10.1103/PhysRevB.54.R3756
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://alps.comp-phys.org/
http://dx.doi.org/10.1007/3-540-49372-7
http://dx.doi.org/10.1007/3-540-49372-7
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001

