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We theoretically explore the notion of nonreciprocal near-zone manipulation of electromagnetic fields

within subwavelength plasmonic nanostructures embedded in magneto-optical materials. We derive an

analytical model predicting a strong, magneto-optically induced time-reversal symmetry breaking of

localized plasmonic resonances in topologically symmetric structures. Our numerical simulations of

plasmon excitations reveal a considerable near-zone power flow rotation within such hybrid nano-

structures, demonstrating nanoscale nonreciprocity. This can be considered as another mechanism for

tuning plasmonic phenomena at the nanoscale.
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Recent advances in plasmonics—nanoscale electrody-
namics of metals—have provided road maps for significant
miniaturization of optical devices and components.
Consequently, electromagnetic fields can be confined,
enhanced, and manipulated in length scales as low as few
nanometers around plasmonic structures [1]. Such a dra-
matic field confinement led to a number of breakthroughs
reported lately, including nanolasers [2], medical treatment
[3], subwavelength nanoantennas [4,5], observation of
novel magnetic resonances [6,7], and some other applica-
tions [8]. However, further scientific development and
technological expansion in the fields of plasmonic optics
and nanophotonics may in general be accelerated by the
ability to tune actively the optical response of plasmonic
structures and their field distributions at the nanoscale.
Several techniques developed in recent years such as active
all-optical control [9–11], nonlinear self-tuning [12,13],
waveform shaping [14–16], and structural modifications
[7,17,18] are regarded as possible pathways for the nano-
scale field manipulation.

Mixing magneto-optical (MO) materials with plasmonic
structures may provide another mechanism, and an addi-
tional degree of freedom, in tailoring the light-matter
interaction in the vicinity of plasmonic structures. It is
well known that the MO materials may possess nonreci-
procal response in optical phenomena [19–21]—a property
that may be exploited for signal handling and manipula-
tion, and for photonic circuits [21–24]. However, the
magneto-optical response of naturally occurring materials
is usually very weak [25] and may not be adequate for
some potential applications. Recently, an incorporation of
MO materials with plasmonic structures has gained
significant attention, due to possible enhancement of
magneto-optical activity in highly localized fields
[26,27]. Enhancement of such macroscopic (i.e., far-field)
nonreciprocal effects as Kerr and Faraday rotations
[26,28–30] and the transverse Kerr effect [27,31] in the
framework of an effective medium approach have been
demonstrated. However, to the best of our knowledge, the

microscopic (i.e., near-field) nonreciprocal optical
response, its tunability, and the study of corresponding
field configurations of individual plasmonic nanoparticles
have not received as much attention.
In this Letter, we theoretically explore and analyze the

concept of nonreciprocal manipulation of near-zone opti-
cal field and nanoscale power flux by mixing magneto-
optical materials with plasmonic nanostructures and
demonstrate, using numerical simulations, a significant
subwavelength nonreciprocal response. In particular, we
study field distributions at plasmonic resonances in such
structures and show that magneto-optical activity may lead
to a strong coupling between the degenerate eigenstates
corresponding to the same resonant frequency, resulting in
the formation of highly localized rotating eigenstates. We
analyze the plane wave excitation of corresponding solu-
tions that depend on the strength of magneto-optical activ-
ity and reveal a pronounced power flux circulation. We
discuss typical structures where the boosting of near-field
power flow circulation is observed and give a brief insight
to the possible experimental realization and potential
applications of such an observed effect.
We begin our study with a generalized two-dimensional

(2D) eigenfrequency analysis for an arbitrary 2D plas-
monic (i.e., metallic) structure embedded in a magneto-
optical material. Figure 1 shows geometries of the problem
with the z axis of a Cartesian coordinate system being
parallel with the axis of geometries. The magnetization
of the MO material may be parallel or antiparallel with the
z axis (i.e., the Voigt configuration). We search for TM
electromagnetic field distributions in the x-y plane, for
which the electric field has x and y components and the
magnetic field only a z component. In this case, the MO
material response is given by an antisymmetric relative
permittivity tensor [25],
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where "MO and "? are diagonal components of dielectric
permittivity and � is the off-diagonal component of the
permittivity tensor responsible for the ‘‘strength’’ of
magneto-optical activity of the media. Typically, � at
optical frequencies is very small and usually is of the order
of 10�2 or even smaller. The wave equation for the electric
field in the x-y plane can be written in the following
operator form:
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where Ex and Ey are the electric field components,! is the

angular frequency, c is the free-space speed of light,
"ðx; yÞ ¼ "MO in MO material and "ðx; yÞ ¼ "m in metal,
and �ðx; yÞ ¼ 1 in MO media and �ðx; yÞ ¼ 0 outside of it.
Obviously, the last term in Eq. (2) associated with the MO
activity leads to a nonreciprocal coupling between the Ex

and Ey electric field components. When � ¼ 0, Eq. (2)

reduces to an ordinary wave equation. The solution of an
eigenfrequency problem in a nonmagnetized case yields a
set of resonant frequencies !0

n with a corresponding set of
eigenstates ðE0

x;ðn;mÞ; E
0
y;ðn;mÞÞT , where the parameters n and

m are the modal parameters related to the radial and
azimuthal variations of the mode, respectively. In general,
the mode degeneracy may be present, implying that d
(m ¼ 1; . . . ; d) eigenmodes may possess the same given
resonant frequency !0

n. Note that for a nondegenerate
system, the magneto-optical activity causes the interaction
between eigenmodes corresponding to different resonant
frequencies !0

n; however, when these resonances are well
pronounced and well separated from each other, such
intermode interaction can be considered negligible. At
the same time, the maximum magneto-optical interaction

is expected between the degenerate states corresponding to
the same resonance, and in further analysis we focus on
this case only. Considering that � � "MO, we apply the
perturbation method for the general case of d times mode
degeneracy at a given resonance !0

n and study the interac-
tion between these degenerate modes. We consider the
series expansion of the eigenfrequency and corresponding
eigenmodes in terms of powers of � as ð!nÞ2 ¼ ð!0

nÞ2 þ
�ð!1

nÞ2 þO2 and E�;n ¼ P
cmE

0
�;ðn;mÞ þ �E1

�;n þO2,

where � stands for the coordinate x or y, and cm’s are
unknown complex coefficients. Substituting these relations
in Eq. (2) and applying standard methods of degenerate
perturbation theory, we obtain
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where the summation is taken over the index m only
(m ¼ 1; . . . ; d), c 0

n;m ¼ ðE0
x;ðn;mÞ; E

0
y;ðn;mÞÞT , and !1

n is the

first order correction to the resonant frequency !0
n due to

the presence of MO activity, i.e., when � is nonzero. It
should be noted here that in general the resonant frequen-
cies in such a system are complex valued quantities !0

n ¼
Reð!0

nÞ½1þ iImð!0
nÞ=Reð!0

nÞ�, taking into account the
plasmonic decay rate. However, for high quality reso-
nances Imð!0

nÞ=Reð!0
nÞ � �, and therefore the plasmon

damping would not influence our first order estimates for
the frequency corrections as well as the predicted fre-
quency splitting, and would contribute to higher order
terms.
Assuming an idealized lossless system, we consider real

valued solutions c 0
n;k in the zeroth order approximation

(i.e., � ¼ 0). In this case, it is possible to show that the last
term under the integral in Eq. (3) vanishes for m ¼ k,
whereas the first term being the scalar product of the
eigenmodes is zero for m � k due to the orthogonality.
Taking these into account, one can show that Eq. (3)
reduces to an eignevalue problem for a d� d matrix
with cm being the eignevectors of this matrix and !1

n

unknown eigenvalues. The solutions of such a matrix are
defined by its zero determinant. Equation (3) shows that
MO activity leads to the coupling between the degenerate
eigenstates, which depends on the cross product between
the k and m states, i.e., the last term in Eq. (3), and results
in the formation of a novel set of complex eigenstatesP

clmc
0
n;m corresponding to the lth eigenvalue of Eq. (3).

The physical meaning of such a coupling is that the back-
and-forth energy beating between the kth and mth states is
established.
For a doubly degenerate case, the determinant of Eq. (3)

is written in a simple way,
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FIG. 1 (color online). Schematic of the two structures studied
in the Letter. (a) A plasmonic nanorod in an equilateral triangular
magneto-optical cavity surrounded by a free space and (b) a
collection of nanorods embedded in an unbounded MO medium.
The magnetization field shown by a thick red arrow is directed
along the main cylinder axis.
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where h�i ¼ R�dS. Considering that hðc 0
n;1Þ2i ’

hðc 0
n;2Þ2i, we derive the expression for the frequency

splitting,
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here, we have dropped the indexes n and 0 for simplicity. In
this case, the eigenvectors of Eq. (3) for d ¼ 2 are complex
conjugates, which means that the solutions of Eq. (3) to the
fist order approximation are E� ¼ ðEx1 � iEx2; Ey1 �
iEy2Þ with corresponding eigenfrequencies !�. In analogy
with clockwise and counterclockwise plasmonic states of a
single nanorod [32], these new solutions E� can be clas-
sified as counterrotating eigenstates. Note that similar so-
lutions were obtained previously for a photonic crystal
circulator [23,24]. When the frequency split j!þ �!�j
is relatively large, these states cannot be excited with the
same strength by an incident electromagnetic field, and
therefore the superposition of these states gives rise to a
near-zone field with a rotating near-field pattern. It is
important to note here that for a doubly degenerate struc-
ture possessing a 90	 rotational symmetry between the
eigenmodes (the simplest example of such a structure
would be a single plasmonic nanorod surrounded by
MO), the cross product hðEx1Ey2 � Ey1Ex2ÞijMO

vanishes,

implying that the reported mechanisms of mode coupling
and corresponding symmetry breaking do not take place.

The specific type of modal degeneracy depends on the
structure design. Generally, the degeneracy is observed for
structures with some rotational symmetry. As two ex-
amples, we consider here a 2D plasmonic nanorod in a
MO 2D cavity surrounded by air and a collection of
parallel nanorods immersed in a MO background (see
Fig. 1). In particular, we study a plasmonic nanorod with
radius R ¼ 50 nm centered in a MO equilateral triangular
cavity with side 450 nm, surrounded by air [Fig. 1(a)], and
a plasmonic nanorod with radius R ¼ 50 nm surrounded
by four other nanorods with smaller radii R2 ¼ 10 nm
symmetrically centered around the first nanorod, 80 nm
away from its axis [Fig. 1(b)]. Without loss of generality,
here we assume that the lossless metal dielectric constant is
fixed at "m ¼ �10, and we consider our MOmaterial to be
a bismuth iron garnet with "MO ¼ 6:25 and � as a free
parameter for our parametric study. We note here that the
choice of material parameters does not limit our generic
predictions, and one might engineer, if necessary, struc-
tures with realistic material dispersions.

First, we consider no MO activity (i.e., � ¼ 0 for zero
magnetization) and search for the eigenfrequencies
and corresponding modal distributions using numerical

simulation with COMSOL Multiphysics, a commercially
available finite-element-based simulation software. The
eigenfrequency analysis shows that both structures possess
two doubly degenerate modes at the second order plas-
monic resonance (n ¼ 2). The corresponding distributions
of the magnetic field intensities for both degenerate states
are shown in Figs. 2(a)–2(d). One can see that the fields are
highly localized in an area less than 100� 100 nm2, due to
a subwavelength confinement at the plasmonic resonances.
The cross products of these degenerate modes are shown in
Figs. 2(e) and 2(f). Clearly, the cross product is azimu-
thally symmetric and monotonically decaying along the
radial direction, implying that the overall integral
hðEx1Ey2 � Ey1Ex2ÞijMO

would be nonzero, and therefore

a strong magneto-optical coupling will exist between the
corresponding modes, if the MO activity is introduced.
When the structure is magnetized, i.e., � � 0, the two
counterrotating states with !� eigenfrequencies are
formed, as was mentioned above. In Fig. 3(a), we plot
the values of the frequency split j!þ �!�j as a function
of the MO parameter �, using Eq. (5). We note that even
for small values of �, the frequency split is significant and
is up to 10 times higher than that reported in Ref. [23],
underlying the plasmonic enhancement of the azimuthal
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FIG. 2 (color online). Intensity profiles of the magnetic field
jHj2 for the degenerate states in the two structures at their second
order resonance (n ¼ 2) and the cross product between these
states for a nanorod in the MO cavity (a), (c), (e) at f0 ¼
407 THz and the collection of nanorods embedded in the MO
medium (b), (d), (f) at f0 ¼ 336 THz, respectively.
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symmetry breaking. Noticeably, the coupling strength for
both structures studied in this Letter is almost analogous,
which can be attributed to the similarities in the topology
of near-field distributions; see Fig. 2. It is important to
compare the reported mechanism of symmetry breaking
with that of a single plasmonic nanorod (R ¼ 50 nm)
surrounded by magneto-optical media. Although the nano-
rod has two degenerate states at each plasmonic resonance
(n ¼ 1; 2; . . . ), the cross product between them is zero,
implying that the reported mechanism of symmetry break-
ing is not applicable for such nanorod so that the corre-
sponding frequency splitting is 2 orders of magnitude
smaller; see Fig. 3(a) (note that the MO activity still leads
to the symmetry breaking between these degenerate modes
associated with an interface effect [33]).

Next, we study the excitation of the predicted rotating
states. In each of the geometries studied here, we consider
a plane wave incident on the structure, as schematically
shown in Fig. 1. We search for the plasmon excitation
spectrum and observe the splitting of plasmonic reso-
nances when MO activity is introduced (not shown here).
In Fig. 4, we present distributions of magnetic field and the
Poynting vector for a nanorod in a triangular MO cavity
at one of the nondegenerate second order plasmonic

resonances (n ¼ 2), i.e., ! ¼ !0 �!1. We observe a
strong distortion and one-way counterclockwise rotation
of the near-field pattern and its power flux, when MO
activity is present. The Poynting vector, describing local
power flow, experiences a dramatic change in its behavior
as one increases �. In particular, for an � ¼ 0 case, we
observe a mirror-symmetric power flow around the nano-
rod [Fig. 4(a)]; i.e., there is no preferred direction of
rotation for this power flow. However, when the MO pa-
rameter � is nonzero, we note a strong power flow circu-
lation around the nanorod as shown in Fig. 4(b). Note that
the power flow circulation at the other nondegenerate
frequency (i.e., ! ¼ !0 þ!1) is in the opposite direction.
The direction of rotation is reversed upon the magnetiza-
tion reversal. Similar behavior is found for the structure
shown in Fig. 1(b), where again the magneto-optical ac-
tivity leads to the breaking of mirror symmetry of power
flow around the structure (not shown here). We note that
the analysis of field distributions at the first order plas-
monic resonances (n ¼ 1) does not reveal any pronounced
energy circulation, although both geometries are doubly
degenerate at this resonance as well. The latter is due to the
zero cross product between the modes.
In order to quantitatively determine the strength of

such Poynting vector circulation, we evaluate the net
azimuthal power flow by inscribing the structure into a
mathematical circular region and then we calculate hP�i ¼
jRL

0

R
2�
0 � �Pd ��drj, where �� is the azimuthal unit vector, �P

is the Poynting vector, and L ¼ 150 nm is the radius of our
integration domain arbitrarily selected. In Fig. 3(b), we
plot this value for both of our structures. We observe an
almost linear increase in the net power flow circulation
with the increase of MO activity. Clearly, the rotational
power flow as a function of � correlates well with the
frequency split vs � shown in Fig. 3(a). We also study the
plane wave excitation of a single nanorod surrounded by a
magneto-optical medium and analyze the corresponding
net azimuthal power flow circulation; see Fig. 3(b). As can
be seen, the overall circulation in this case is almost 2
orders of magnitude smaller, ensuring that the near-field
rotation is negligibly weak, which agrees well with the
frequency splitting predictions shown in Fig. 3(a).
Finally, we study the influence of losses on the system

dynamics. In particular, we trace the power flux circulation
in a lossy system, taking into account the metal loss, i.e.,
considering that Imð"mÞ ¼ 0:1. The corresponding net azi-
muthal power flow is shown as dashed curves in Fig. 3(b).
Evidently, the nanocirculation of the power flux around the
plasmonic nanostructures is well preserved in these lossy
systems and is 1 order of magnitude higher than that for a
single lossless cylinder in an unbounded MO medium. The
predicted phenomenon of nanoscale circulation of power
flux may have interesting impacts on various scenarios in
plasmonics and nanophotonics, and although direct experi-
mental measurement of the predicted effect might be
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challenging, one might think of a possible indirect experi-
mentation and a design of future generation of nanopho-
tonic devices [34].

In conclusion, using analytical and numerical study, we
have shown that incorporating magneto-optical materials
with plasmonic structures leads to a significant nonreci-
procal symmetry breaking in the near field. We have dem-
onstrated that in the presence of MO activity, the modes
excited at plasmonic resonances in certain types of geome-
tries couple strongly with each other, resulting in a for-
mation of nonreciprocal rotating states. The plane wave
excitation of two plasmonic geometries studied here has
revealed a strong near-field power flow circulation. This
near-zone subwavelength power flux circulation and rota-
tion may be exploited for the design of next generation
tunable nanoscale plasmonic devices. The principles of
nanoscale optical field manipulation might pave the way
for a wide variety of potential applications in tunable
sensing, active plasmonic elements, particle manipulation,
and others.
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