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We prove a topological criterion for the existence of a zero-energy Majorana bound state on a

disclination, a rotation symmetry breaking point defect, in fourfold symmetric topological crystalline

superconductors (TCS) in two dimensions. We first establish a complete topological classification of TCS

using the Chern invariant and three integral rotation invariants. By analytically and numerically studying

disclinations, we algebraically deduce a Z2 index that identifies the parity of the number of Majorana zero

modes at a disclination. Surprisingly, we also find weakly protected Majorana fermions bound at the

corners of superconductors with trivial Chern and weak invariants.
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Symmetry protected topological insulators and super-
conductors have theoretically, and experimentally risen to
prominence in the last half decade [1]. Recent develop-
ments in this field have moved on from the study of discrete
symmetries such as time reversal and charge conjugation
[2–4] to translational and point-group symmetries [5–15].
While spatial symmetries are not preserved as generically
as, say, time reversal, they can still support robust topo-
logical states in clean crystalline systems. It is understood
that the so-called strong topological invariants, which are
protected no matter what spatial symmetries are broken,
determine the appearance of disorder-insensitive gapless
boundary states. Interestingly, it was found that weak
invariants, which require an additional translation symme-
try, support boundary states [16,17] and, more surprisingly,
robust bound states on crystal dislocations [18–22].
A natural question to ask is then whether topological
defects of the point-group rotational symmetry, i.e., discli-
nations, can also bind low-energy states in topological
phases protected by point-group symmetry. A related prob-
lem has been studied in a different context in graphene
[23–25]. In this Letter we address this question for 2D
topological superconductors with point-group symmetry.
Our main results are (i) a complete classification of 2D
superconductors with C4 symmetry, (ii) the derivation of a
Z2 index theorem that determines the existence of zero-
energy Majorana bound states (MBS) [26,27] on disclina-
tions and the corners of material samples, and (iii) a unique
algebraic approach that can be used to prove generic index
theorems.

Just as dislocations are local topological defects in the
translational order of crystals, disclinations are topological
defects in the discrete rotational order. In two dimensions,
disclinations are point defects that can be constructed by
removing or inserting material in certain angular sections
with angles compatible with the crystalline symmetry (see
Fig. 1) [28]. Dislocations are characterized by their

Burgers vectors, i.e., the translation element acquired
when a particle encircles the defect; disclinations are
described by an element in the space group encoding the
amount of rotation � and translation T one picks up
traveling around the point defect. The translation piece T
is not unique and depends on the enclosing path; however,
for a C4-symmetric lattice the evenness (type 0) or oddness
(type 1) of the number of translations is unique. The C4

symmetry thus yields a Z2 characteristic that distinguishes
classical disclinations with the same Frank angle �.
Examples are shown for � ¼ �90� disclinations in
Figs. 1(c) and 1(d). The difference between the two primi-
tive disclinations can be observed at the defect cores where
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FIG. 1 (color online). (a),(b) 2D lattice configurations with
three disclinations. Each of the three faces is a L� L square
lattice. Periodic boundary conditions are taken on the six edges
of the hollow cubes as indicated by matching colors and line
styles. (c)–(f) Flattened, zoomed-in versions of the � ¼ �90�
(c),(d) and � ¼ þ180� (e),(f) disclinations at O, K, and K0.
(c) Type-1 disclination centered at a triangular plaquette with an
odd number of translations around its boundary. (d) Type-0
disclination centered at a trivalent vertex with an even number.
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C4 symmetry is violated at either a triangular plaquette or a
trivalent vertex. The Z2 characteristic arises from the fact
that there are two inequivalent fourfold rotation centers,
vertex or plaquette, which can be extended to general
Cn [29].

We will only consider fully gapped, translationally in-
variant superconductors in the mean-field limit which are
described by Bogoliubov–de Gennes (BdG) Hamiltonians
HðkÞ, in Bloch form defined on a square Brillouin zone
(BZ), with a particle-hole constraint �HðkÞ�y ¼
�Hð�kÞ, where � is a local, antiunitary operator. A
point-group element r is represented by a unitary operator
r̂ that commutes with the full Hamiltonian, and satisfies
r̂HðkÞr̂y ¼ HðrkÞ for the Bloch Hamiltonian, and
�r̂�y ¼ r̂ for the particle-hole operator [30]. For the
duration of our work we will focus on the Abelian point-
group C4 generated by �=2 rotations, which is a symmetry
commonly shared by all layered perovskite superconduc-
tors. We use the half-integer spin rotation such that
r̂4 ¼ ðr̂2Þ2 ¼ �1.

C4-symmetric superconductors in two dimensions
are classified by (i) the Chern invariant Ch ¼
ði=2�ÞRBZ d

2k�ijTrð@kiAjÞ 2 Z with ðAiÞmnðkÞ ¼
humðkÞj@ki junðkÞi being the Berry connection of the

negative-energy bands [32–34], (ii) the eigenvalues of
the rotation operator r̂ for all the negative-energy states
at the fourfold symmetric momenta � ¼ �;Mð¼ ð�;�ÞÞ,
and (iii) the spectrum of the C2 rotation r̂2 at one of the
equivalent twofold symmetric momenta X ¼ ð�; 0Þ or
X0 ¼ ð0; �Þ. We label the bands at the symmetry points
by their rotation eigenvalues following Ref. [35]. At � ¼
�, M, a band with r̂ ¼ e�i�=4, ei�=4, e3i�=4, e�3i�=4 is
labeled by �5, �6, �7, �8, respectively, while at X, a
band with r̂2 ¼ i,�i is labeled by X3, X4, respectively. Let
#�i, #Xi be the number of appearances of �i, Xi within
the negative-energy states. Only the differences of the
eigenvalues between symmetry points carry topological
information, and our convention uses the eigenvalues rela-
tive to the values at the � point. We define

n3 ¼ #X3 � #�6 � #�8; (1)

n4 ¼ #X4 � #�5 � #�7; (2)

ni ¼ #Mi � #�i; for i ¼ 5; 6; 7; 8: (3)

These are easy to understand as �6, �8 (�5, �7) both square
to þið�iÞ and thus n3, n4 determine the difference in the
C2 eigenvalues at X and � while n5;6;7;8 determine the

C4-eigenvalue differences between M and �. These inte-
gers obey n3 þ n4 ¼ n5 þ n6 þ n7 þ n8 ¼ 0 (from the
constant number of negative-energy bands throughout the
BZ) and n5 þ n6 ¼ n7 þ n8 ¼ 0 (from the particle-hole
constraint). Following the work of Ref. [14], one can show
that

Chþ n6 þ 2n4 þ 3n7 � 0 mod 4: (4)

Hence C4-symmetric topological crystalline superconduc-
tors are completely classified by four integral invariants
�i � ðCh; n4; n6; n7Þ that satisfy Eq. (4). Moreover the
weak Z2 topological invariant is determined by the inver-
sion eigenvalues at M and X,

G� ¼ �ðG1 þG2Þ; � ¼ ðn4 þ n6 � n7Þ mod 2; (5)

where G1, G2 are the reciprocal lattice vectors.
The essential ingredient of our index-theorem proof is

a collection of 2D C4-symmetric superconductor models
that ‘‘generate’’ all the topological classes characterized by
the �i. Since the �i are four component vectors we need
four Hamiltonians which have linearly independent �i.
Combining the Hamiltonians via a direct sum combines
the vectors with a vector sum, so any topological class �i

can be produced. We choose two generators to be spinless,
chiral px þ ipy superconductors on a square lattice,

Ha ¼ �ðsinkx�x þ sinky�yÞ þ ½u1ðcoskx þ coskyÞ
þ 2u2 coskx cosky��z; (6)

where �a acts on Nambu space, � is the px þ ipy pairing,

and the first or second neighbor hoppings u1, u2 are kinetic
energy terms that gap out the nodes of the pairing term
at the points �, X, X0, M. The particle-hole and rotation

operators are given by�a ¼ �xK and r̂a ¼ ð12 þ i�zÞ=
ffiffiffi
2

p
,

where K is complex conjugation. The invariants �i depend
on u1 and u2 and are summarized in Table I. Flipping the
signs of both u1 and u2 inverts �i ! ��i.
The other independent generators also have chiral

px þ ipy pairing, but have different single-particle kinetic

energy terms. They can be clearly represented as 2D general-
izations of Kitaev’s p-wave wire [31]. Figure 2 depicts two
tight-binding limits of C4-symmetric Majorana fermion
models with four fermions per site and arrows which
represent the Majorana ordering convention. The two

Hamiltonians are Ĥb ¼ it
P

xð�1
x�

3
xþe1

þ �2
x�

4
xþe2

Þ and

Ĥc ¼ it
P

xð�1
x�

3
xþe1þe2

þ �2
x�

4
x�e1þe2

Þ, where the �i
x’s are

Majorana operators with �iy
x ¼ �i

x and f�i
x; �

j
yg ¼ 2�ij�xy.

The C4 rotation operator r̂bc ¼ Q
x exp½�ð�=4Þ�1

x�
2
rx��

exp½�ð�=4Þ�2
x�

3
rx� exp½�ð�=4Þ�3

x�
4
rx� gives r̂bcð�1

x; �
2
x;

�3
x; �

4
xÞr̂ybc ¼ ð�2

rx; �
3
rx; �

4
rx;��4

rxÞ, where r is the C4 rota-

tion in real space. If we transform to complex fermions cx ¼
ð�1

x þ i�3
xÞ=2 and dx ¼ ð�2

x þ i�4
xÞ=2 then we find

TABLE I. Chern and rotation invariants for the chiral px þ ipy

superconductor in Eq. (6). The Hamiltonians are superscript
labeled by their Chern and weak invariants (Ch; �).

Ha Hopping strength Ch n4 n6 n7

Hð1;0Þ
a u1 > u2 > 0 1 �1 1 0

Hð1;1Þ
a �u1 > u2 > 0 1 0 �1 0

Hð2;1Þ
a u2 > ju1j 2 �1 0 0
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HbðkÞ ¼ tðcoskx�z þ sinkx�yÞ � tðcosky�z þ sinky�yÞ;
HcðkÞ ¼ tð cosðkx þ kyÞ�z þ sinðkx þ kyÞ�yÞ

� tð cosðkx � kyÞ�z þ sinðky � kxÞ�yÞ (7)

in the basis ~�k ¼ ðc�k; c
y
k; d�k; d

y
kÞT and where the �i’s act

on Nambu space. The particle-hole and rotation operators are
�bc ¼ ð12 � �xÞK and r̂bc ¼ 	þ � 12 � i	� � �z where
	� ¼ 1=2ð	x � i	yÞ acts on the (c, d) space. The �i for

Hb andHc are shown in Table II and they complete the set of
independent generators. EveryC4-symmetric superconductor

has identical topological properties to direct sums of Hð1;0Þ
a ,

Hð1;1Þ
a ,Hb andHc. In particular the zeromodes at disclinations

in any C4-symmetric superconductor can be determined this
way.

We will now determine the properties of disclinations
for each generator. A disclination configuration is specified
by the pair (�,T) mentioned earlier. TheMBS of the chiral
superconductors Ha (with pairing and hopping parameters
2u2=� ¼ �u1=� ¼ 1) are studied numerically using pe-
riodic lattice models with three disclinations. We took
three adjacent faces of a cube and glued the parallel sides
[see Figs. 1(a) and 1(b)]. Two �90� disclinations are
located at the points O and K and a þ180� disclination
is located at K0. We use two lattice configurations that
differ in the choice of a type-0 or type-1 disclination at
O [see Figs. 1(c) and 1(d)]. The superconducting phase is
chosen so that it smoothly winds around the defects, but
there are two inequivalent ways of specifying the defect
lattice due to the double covering of the rotation group. The
smooth winding around the disclination involves either the

rotation r̂ðsÞ ¼ eis��z=2 or r̂0ðsÞ ¼ eisð2�þ�Þ�z=2, parame-
trized by s 2 ½0; 1�. We choose r̂ðsÞ and thus the phase
smoothly winds by �=2 around O, K and �� around K0.
Note, if we choose r̂0ðsÞ then the C4 operator would be �r̂

instead which changes n6 $ �n7. We find that only Hð1;1Þ
a

supports an odd number of MBS and even then only for

type-1 disclinations. The results are summarized in
Table III and we show the zero-mode wave functions at
the disclinations at O and K in Figs. 3(a) and 3(b).
For Hb, Hc we use the fact that the parity of the number

of MBS at the defect is insensitive to all perturbations that
do not violate the energy gap or rotation symmetry away
from the point defect since there is no low-energy channel
for a single Majorana bound state to escape or enter the
disclination core. This implies that, just as for the boundary
modes of the topological p-wave wire [31], we can deter-
mine the parity of the zero-mode bound states pictorially in
the tightly bound limit. The MBS of Hb and Hc at type-0
and type-1 �90� disclinations are shown in Figs. 3(c) and
3(d), where the MBS are simply unbonded Majorana fer-
mions represented by thick red dots. We find that Hb has a
zero mode for type 0, and Hc has zero modes for both
types. This is summarized in Table III.
We are now in a position to determine the index theorem

since any C4-symmetric BdG Hamiltonian can be
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FIG. 2 (color online). C4-symmetric tight binding models with
four Majorana fermions (black dots) at each site. (a) Hb. (b) Hc.

TABLE II. Chern and rotation invariants of models in Fig. 2.

TB model Ch n4 n6 n7

Hb 0 1 �1 1

Hc 0 2 0 0

TABLE III. Parity of the number of zero modes at a �90�

disclination for the chiral superconductorsHð1;0Þ
a ,Hð1;1Þ

a in Eq. (6)
with smooth rotation r̂ðsÞ ¼ eis��z=2 and the tight binding
models Hb, Hc in Fig. 2.

�90� disclination Hð1;0Þ
a Hð1;1Þ

a Hb Hc

Type-0 0 0 1 1

Type-1 0 1 0 1
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FIG. 3 (color online). (a),(b) Exponentially localized probabil-
ity density of the Majorana zero mode at disclinations O and K,
plotted on a torus geometry where parallel sides on the hexago-
nal domain are identified. Compare with 3D lattice in
Fig. 1. (c) Tight binding model Hb with (left) type-1 and (right)
type-0 disclinations. (d) Hc with (left) type-1 (right) type-0
disclinations. Thick red dots in disclination cores are unpaired
Majorana bound states.
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smoothly deformed into a unique composition ½H� ’
m1½Hð1;0Þ

a � �m2½Hð1;1Þ
a � �m3½Hb� �m4½Hc� up to topo-

logically trivial bands far from the Fermi level. The direct
sum implies taking mi decoupled copies (mi are integers),
and mi < 0 means a copy with the negative and positive
energy states switched. To finish the derivation of the
topological Z2 index we need to carry out some simple
algebraic manipulations. First, we see that since Hc only
has n4ð¼ 2Þ nonzero and has zero modes for both discli-
nation types the index gets a contribution of 1=2ðn4Þmod 2.

Next we can take 2Hð1;0Þ
a � 2Hð1;1Þ

a �Hc which has �i ¼
ð4; 0; 0; 0Þ and bound states for both types. This implies the
index receives a contribution of 1=4ðChÞ mod 2. Using

these two pieces we can go back to Hð1;0Þ
a , which does

not have any zero modes, and determine the equation
½1=2ðn4Þ þ 1=4ðChÞ þ kðn6Þ�mod 2 ¼ 0 which upon sub-
stitution gives k ¼ 1=4. To determine the contribution of

n7 we consider H
ð1;0Þ
a �Hð1;1Þ

a �Hb with �i¼ð2;0;�1;1Þ.
This model has bound states on both types of disclinations
so we use ½1=2ðn4Þþð1=4ÞðChÞþð1=4Þn6þjn7�mod2¼1
to find j ¼ 3=4. So far we were careful to choose all the
Hamiltonian combinations above to have a vanishing
weak invariant as it also contributes to the index. We can

see this by taking Hð1;1Þ
a which yields 1=4½Chþ n6 þ

2n4 þ 3n7�mod 2 ¼ 0, yet has a bound state on type-1
disclinations. This bound state, however, arises from a
different mechanism, and comes from the interplay of the
nonzero weak invariant and the oddness of the translation
T around a type-1 disclination. Thus, we have determined
the existence conditions for an odd number of MBS at a
�90� disclination. A þ90� disclination carries identical
Majorana bound state parity since a �90� dipole of dis-
clinations (of the same type) combines into a dislocation
with an even Burgers vector and thus even overall
Majorana bound state parity. Combining disclinations
gives ð�1;T1Þ þ ð�2;T2Þ ¼ ð�1 þ�2;T1 þ rð�1ÞT2Þ;
e.g., fusing two � ¼ �=2 disclinations yields an � ¼ �
disclination. This implies that for generic C4 disclinations
with Frank angle � the topological index is

� �
�
1

2�
T 	G� þ �

2�
ðChþ n6 þ 2n4 þ 3n7Þ

�
mod 2;

(8)

where G� is the weak Z2 invariant (see the Supplementary
Material for more detail [36]). The first term resembles the
topological index for MBS at a dislocation, with the
Burgers vector B replaced by T [18–20]. It vanishes for
type-0 disclinations and equals n4 þ n6 þ n7 (mod 2) for
type-1 disclinations. The second term of Eq. (8) is an
integer because of the constraint (4) and can distinguish
Chern numbers which are even or odd multiples of 4, e.g.,
Ch ¼ 4 or 8.

For a more physical understanding we can refer to the
outer boundaries of regions surrounding a single

disclination [see Figs. 3(c) and 3(d)]. For Fig. 3(c) we
see the boundary links carry one unbound Majorana
each, and the corners contain two whereas in Fig. 3(d)
the links carry two and the corners carry three. Since there
is only one disclination, the parity of MBS on the boundary
will match the parity in the disclination core. We can
clearly see that the two terms that comprise � represent
the edge and corner contributions to the index, respec-
tively. T 	G�=2� counts the number of MBS (mod 2) on
an edge with length T, while ðChþ n6 þ 2n4 þ 3n7Þ=4
counts the Berry phase due to continuous rotation and the
number of MBS at a 90� corner. The index (8) therefore not
only gives information about the disclination core, but also
about the defect-free system boundary. In particular, even a
system such as Hc, with vanishing Chern and weak Z2

invariants (which thus does not carry topologically pro-
tected edge modes) binds Majorana fermions at corners
since � � 1. This implies that the rotation eigenvalues
determine the existence of MBS in the form of corner
states even in a defect and vortex free system.
� can also be illustrated in a continuum system on a

disk geometry with a disclination at the origin. Take four
copies of a spinless, continuum px þ ipy superconductor

with each copy rotated by �=2 relative to the previous:

H4 ¼ h0 � h�=2 � h� � h3�=2 for h
 ¼ ei
�z=2h0e
�i
�z=2,

h0ðkÞ ¼ j�jkx�z þ j�jky�y þ ðm� "k2Þ�z. H4 has the

C4 symmetry r̂4 which sends h0 ! h�=2, h�=2 ! h�,
h� ! h3�=2, h3�=2 ! �h0. A �90� disclination is repre-

sented by the helix in Fig. 4, where the top and bottom
layers are glued along the branch cut (red line) with anti-
periodic boundary conditions since r̂44 ¼ �1. The discli-
nation helix can be continuously untwisted to form a single
copy of a px þ ipy model with a �-flux vortex replacing

the disclination at the origin that binds a Majorana bound
state [26]. This is consistent with the index theorem (8)
since Ch ¼ 4, n4 ¼ T ¼ 0 for continuum models, and also
n6 ¼ n7 ¼ 0 since momentum space can be compactified
into a sphere S2 ¼ R2 [ f1g and the rotation spectra at the
fixed points k ¼ 0 and 1 are identical.
We have shown that topological crystalline supercon-

ductors in two dimensions with C4 rotation symmetry are
classified by four integers �i ¼ ðCh; n4; n6; n7Þ and a Z2

untwist
h/2e

disclination

FIG. 4 (color online). Untwisting a �90� disclination of the
four layer px þ ipy continuum model H4 into a single layer

px þ ipy model with a quantum vortex.
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index� determines the appearance of zero-energy MBS at
disclinations and sample corners. Although the index theo-
rem relies on C4 symmetry, a Majorana bound state cannot
escape without a low energy delocalized channel and thus
is robust against any rotation breaking perturbation that
does not close the bulk energy gap around the defect. The
MBS at the corners of a sample, however, are sensitive to
C4 breaking perturbations, but could be observed in clean
systems.

We thank Bryan Chen and Chen Fang for insightful
discussions. J. C. Y. T. was supported by the Simons
Fellowship and T. L. H. was supported by ONR Grant
No. N0014-12-1-0935. We also thank the support of the
UIUC ICMT.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[3] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78,
195424 (2008).

[4] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[5] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[6] J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78,

045426 (2008).
[7] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[8] T. L. Hughes, E. Prodan, and B.A. Bernevig, Phys. Rev. B

83, 245132 (2011).
[9] A.M. Turner, Y. Zhang, and A. Vishwanath, Phys. Rev. B

82, 241102(R) (2010).
[10] T. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu,

Nat. Commun. 3, 982 (2012).
[11] P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A.

Szczerbakow, M. Szot, E. Lusakowska, T.
Balasubramanian, B.M. Wojek, M.H. Berntsen, O.
Tjernberg, and T. Story, arXiv:1206.1705.

[12] S.-Y. Xu, C. Liu, N. Alidoust, D. Qian, M. Neupane, J. D.
Denlinger, Y. J. Wang, L. A. Wray, R. J. Cava, H. Lin, A.
Marcinkova, E. Morosan, A. Bansil, and M. Z. Hasan,
arXiv:1206.2088.

[13] C. Fang, M. J. Gilbert, X. Dai, and B.A. Bernevig, Phys.
Rev. Lett. 108, 266802 (2012).

[14] C. Fang, M. J. Gilbert, and B.A. Bernevig, Phys. Rev. B
86, 115112 (2012).

[15] C. Fang, M. J. Gilbert, and B.A. Bernevig, Phys. Rev. B
87, 035119 (2013).

[16] Z. Ringel, Y. E. Kraus, and A. Stern, Phys. Rev. B 86,
045102 (2012).

[17] R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Phys.
Rev. Lett. 108, 076804 (2012).

[18] Y. Ran, Y. Zhang, and A. Vishwanath, Nat. Phys. 5, 298
(2009).

[19] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120
(2010).

[20] Y. Ran, arXiv:1006.5454.
[21] D. Asahi and N. Nagaosa, Phys. Rev. B 86, 100504(R)

(2012).
[22] V. Juricic, A. Mesaros, R.-J. Slager, and J. Zaanen, Phys.

Rev. Lett. 108, 106403 (2012).
[23] M.A.H. Vozmediano, M. I. Katsnelson, and F. Guinea,

Phys. Rep. 496, 109 (2010).
[24] E. A. Kochetov, V.A. Osipov, and R. Pincak, J. Phys.

Condens. Matter 22, 395502 (2010).
[25] A. Regg and C. Lin, Phys. Rev. Lett. 110, 046401

(2013).
[26] N. Read and D. Green, Phys. Rev. B 61, 10267

(2000).
[27] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[28] V. Volterra, Ann. Scient. Ec. Norm. Sup. 24, 401 (1907);

N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979); D. R.
Nelson, Defects and Geometry in Condensed Matter
Physics (Cambridge University Press, Cambridge,
England, 2002); M. Kleman and J. Friedel, Rev. Mod.
Phys. 80, 61 (2008).

[29] For C2 and C3 there is a Z2 � Z2 and Z3 classification of
disclinations with the same Frank angle, respectively. C6

only has one type.
[30] In a lattice superconducting model, rotation is chosen to

center at a unit cell that is compatible with local fermion
parity (cf. inversion center of the Kitaev superconducting
chain [31]).

[31] A. Kitaev, Phys. Usp. 44, 131 (2001).
[32] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M.

den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[33] G. E. Volovik, The Universe in a Helium Droplet

(Clarendon, Oxford, 2003).
[34] A. Kitaev, Ann. Phys. (Amsterdam) 321, 2 (2006).
[35] G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,

Properties of the Thirty-Two Point Groups (MIT,
Cambridge, MA, 1963); C. J. Bradley and A. P.
Cracknell, The Mathematical Theory of Symmetry in
Solids: Representation Theory for Point Groups and
Space Groups (Oxford University, New York, 1972).

[36] See Supplementary Material http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.047006 for more
detail.

PRL 111, 047006 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JULY 2013

047006-5

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.78.045426
http://dx.doi.org/10.1103/PhysRevB.78.045426
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1103/PhysRevB.83.245132
http://dx.doi.org/10.1103/PhysRevB.83.245132
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1038/ncomms1969
http://arXiv.org/abs/1206.1705
http://arXiv.org/abs/1206.2088
http://dx.doi.org/10.1103/PhysRevLett.108.266802
http://dx.doi.org/10.1103/PhysRevLett.108.266802
http://dx.doi.org/10.1103/PhysRevB.86.115112
http://dx.doi.org/10.1103/PhysRevB.86.115112
http://dx.doi.org/10.1103/PhysRevB.87.035119
http://dx.doi.org/10.1103/PhysRevB.87.035119
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1038/nphys1220
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://arXiv.org/abs/1006.5454
http://dx.doi.org/10.1103/PhysRevB.86.100504
http://dx.doi.org/10.1103/PhysRevB.86.100504
http://dx.doi.org/10.1103/PhysRevLett.108.106403
http://dx.doi.org/10.1103/PhysRevLett.108.106403
http://dx.doi.org/10.1016/j.physrep.2010.07.003
http://dx.doi.org/10.1088/0953-8984/22/39/395502
http://dx.doi.org/10.1088/0953-8984/22/39/395502
http://dx.doi.org/10.1103/PhysRevLett.110.046401
http://dx.doi.org/10.1103/PhysRevLett.110.046401
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1103/RevModPhys.80.61
http://dx.doi.org/10.1103/RevModPhys.80.61
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.047006
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.047006

