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We propose a novel chiral order parameter to explain the unusual polar Kerr effect in underdoped

cuprates. It is based on the loop-current model by Varma, which is characterized by the in-plane anapole

momentN and exhibits the magnetoelectric effect. We propose a helical structure where the vectorNðnÞ in
the layer n is twisted by the angle �=2 relative toNðn�1Þ, thus breaking inversion symmetry. We show that

coupling between magnetoelectric terms in the neighboring layers for this structure produces optical

gyrotropy, which results in circular dichroism and the polar Kerr effect.
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Introduction.—The nature of the pseudogap phase in
underdoped cuprate superconductors has been a long-
standing problem [1]. A series of optical measurements
[2–5] revealed gyrotropy in this state. It was observed that
the polarizations of incident and reflected light differ by a
small angle �K, called the polar Kerr angle. Initially, these
experiments were interpreted as the evidence for sponta-
neous time-reversal symmetry breaking. Theoretical
models [6–9] derived optical gyrotropy from the anoma-
lous Hall effect. In these scenarios, the order parameter
is equivalent to an intrinsic magnetic field perpendicular
to the layers, which permeates the system and points
inward and outward at the opposite surfaces of a crystal.
Therefore, the Kerr angle should have opposite signs at the
opposite surfaces of the crystal.

However, recent reports [10,11] found that the Kerr
angle has the same sign at the opposite surfaces of a
sample. Therefore, the observed gyrotropy is not consistent
with the time-reversal-symmetry breaking due to a mag-
netic order and should be interpreted as the evidence for
natural optical activity due to chiral symmetry breaking
[12]. Systems with helical structures, such as cholesteric
liquid crystals and some organic molecules, typically
exhibit optical gyrotropy and the polar Kerr effect. It is
important that the sign of the Kerr angle in this case is the
same at the opposite surfaces of the system, in contrast to
the gyrotropy produced by a magnetic order (see Chaps. 11
and 12 in Ref. [12]).

Theoretical scenarios for appearance of chiral order in
cuprates were proposed in Refs. [11,13]. Three possible
orders were studied phenomenologically in Ref. [11]:
3-plane rotation of distorted Fermi circles, 4-plane rotation
of a structure with an in-plane ferroelectric moment, and
4-plane rotation of an in-plane density wave with period 3.
A formula for gyrotropy of a chiral metal was derived in
Ref. [13] in terms of the Berry curvature in momentum
space. However, Ref. [14] questioned applicability of the
implied assumption of coherent electron motion between

the layers in Ref. [13]. X-ray circular dichroism due to
chiral order was discussed in Ref. [15].
Helical order of the anapole moments.—Here we pro-

pose a novel chiral state, which could account for the polar
Kerr effect in cuprates without requiring coherent electron
motion between the layers. The starting point for our
construction is the model of persistent loop currents by
Simon and Varma [16] shown in Fig. 1(a). The configura-
tion of persistent currents is such that the total magnetic
flux through the lattice unit cell vanishes. The anomalous
Hall effect is zero [17], and this state does not exhibit
magnetic gyrotropy. The loop-current order [18] is

FIG. 1 (color online). (a) Loop-current order in a CuO2 plane
[16]. Black arrows show directions of microscopic persistent
currents between copper and oxygen atoms. Green arrow shows
the anapole moment N. (b) Chiral order constructed on a series
of parallel CuO2 planes. The vector N rotates by the angle �=2
from one layer to another, and the period of the structure is
fourfold. The blue and red curves are the two magnetic field lines
that intertwine in a double helix.
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characterized by the anapole momentN [19,20], shown by
the green arrow in Fig. 1(a) and defined as

N ¼
Z

d2r½mðrÞ � r� ¼ 1

2c

Z
d2rr2jðrÞ: (1)

Here, mðrÞ and jðrÞ are the microscopic densities of the
magnetic moment and electric current, and the integral is
taken over the unit cell. The square symmetry of the lattice
allows four possible orientations [21] for the vector N,
which can be obtained by progressive �=2 rotations of
the configuration shown in Fig. 1(a).

We propose a novel chiral state where the anapole

moments NðnÞ in consecutive CuO2 layers labeled by the
integer number n are rotated by �=2, so that they trace out
a helix, as shown in Fig. 1(b). This arrangement is some-
what similar to cholesteric liquid crystals [22]. This spiral
structure breaks three-dimensional inversion symmetry
and can be qualitatively visualized as follows. The in-plane
triangular loop currents in Fig. 1(a) produce perpendicular
magnetic fields of the opposite signs shown by the circled
red dot and blue cross at the centers of the loops. When the

anapole moments NðnÞ are arranged in the spiral structure
in Fig. 1(b), the red and blue magnetic field lines, prop-
agating from one layer to another, form a double helix due

to twisting of NðnÞ.
The chiral structure is characterized by a pseudoscalar

order parameter � changing sign upon inversion

� ¼ hẑ � ½NðnÞ �Nðnþ1Þ�i; (2)

where ẑ is the unit vector along the z axis. If the anapole

vector NðnÞ is static, Eq. (2) does not need the brackets

for averaging. However, if the vector NðnÞ fluctuates, the
brackets in Eq. (2) represent thermodynamic and, possibly,
quantum [23] averaging. The chiral order parameter� is a

local correlation function of the orientations of NðnÞ in the
neighboring layers and does not require long-range order in

NðnÞ. Spontaneous chiral symmetry breaking is known for
other systems [24,25]. The configuration with �=2 rota-
tions in Fig. 1(b) maximizes� for a given absolute value of
N. Notice that Eq. (2) is similar to the Dzyaloshinskii-
Moriya interaction for spins and to the Lifshitz invariant
N � ½r�N� with r ¼ ẑ@z in the continuous limit.

In electrodynamics of media [12], natural optical activ-
ity arises when inversion symmetry is broken and the
expansion of the dielectric tensor "��ð!; kÞ in powers of

the wave vector k has a nonvanishing first-order term

"��ð!; kÞ ¼ "��ð!; 0Þ þ i�ð!Þ���zkz: (3)

Here, ���� is the antisymmetric tensor, and kz is the wave

vector of an electromagnetic wave propagating along the
z axis. The second term in Eq. (3) represents a nonlocal
effect along the z axis and is responsible for gyrotropic
properties of the medium. The polar Kerr angle �K is
determined by the following formula [26] to the first order
in the coefficient � in Eq. (3)

tan�Kð!Þ ¼ !

c
Im

�
�ð!Þ

1� "ð!Þ
�
: (4)

It is clear that a nonzero Kerr angle requires an imaginary
part, i.e., dissipation, either in "ð!Þ or �ð!Þ. In the rest of
the Letter we derive the second term in Eq. (3) for the spiral
structure in Fig. 1(b).
Magnetoelectric effect in a single CuO2 plane.—First let

us consider a single CuO2 plane with loop currents in
Fig. 1(a). Integration of the electron field, schematically
shown in the left diagram in Fig. 2(a), gives an effective
action for the electromagnetic field with a magnetoelectric
term [12,27]. By symmetry, it has the form [18]

SME ¼
Z

d!d2r�ð!ÞBzð�!Þ½N�Eð!Þ�z: (5)

Here, E ¼ ðEx; EyÞ is the in-plane electric field, Bz is the

out-of-plane magnetic field, and N ¼ ðNx;NyÞ is the

in-plane anapole moment. Given Eq. (1), the anapole
moment N is the time-reversal-odd and parity-odd vector,
so Eq. (5) has the correct symmetry structure. It is
represented graphically by the right diagram in Fig. 2(a).
Equation (5) is written in the frequency representation
for the electromagnetic fields, whereas N is taken to be
static, i.e., having zero frequency, and�ð!Þ is a frequency-
dependent coefficient. The effective action in Eq. (5) is
written in the continuous, long-wavelength limit by aver-
aging the electromagnetic fields over distances longer than
the unit cell of the lattice.

FIG. 2. (a) Left: Feynman diagram for the effective action of electromagnetic fields (wavy lines), obtained by integrating out
the electron field (solid lines with arrows). Right: The magnetoelectric term in the effective action, Eq. (5), where the double line
represents the anapole moment N. (b) Coupling between the magnetoelectric terms at the neighboring layers produces the effective
action for the electric field in Eq. (9). The dashed wavy line represents the magnetic field propagator, and the double solid
line represents the interlayer correlator of the anapole moments in Eq. (2).
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By taking a variation of Eq. (5), we find that an in-plane
electric field induces an out-of-plane magnetization

Mzð!Þ ¼ 	SME

	Bzð�!Þ ¼ �ð!Þ½N�Eð!Þ�z: (6)

Physical interpretation is clear by symmetry in Fig. 1(a).
An in-plane electric field E ? N promotes electron trans-
fer from one triangular loop to another, thus breaking
symmetry and making one loop current stronger, which
results in the net perpendicular magnetization.

Similarly, an out-of-plane magnetic field induces an
in-plane electric polarization

Pð!Þ ¼ 	SME

	Eð�!Þ ¼ �ð!Þ½N� Bzð!Þ�: (7)

The perpendicular magnetic field Bz lowers the energy for
one loop current and increases for another in Fig. 1(a),
which results in electron transfer between the loops and the
in-plane electric polarization P ? N.

Interlayer coupling and the gyrotropic term.—Now let
us consider many parallel layers labeled by the integer
number n. In this case, we expect a magnetic coupling
between magnetizations at the neighboring layers

SMM ¼ �
Z

d!d2r
X
n

�MðnÞ
z ð!ÞMðnþ1Þ

z ð�!Þ: (8)

This term should be derived microscopically from the
distribution of electric currents inside the unit cell compa-
rable to the interlayer distance d. Here we simply write
Eq. (8) by symmetry for the long-wavelength fields Mz

with a phenomenological coefficient �. We assume that
the interlayer coupling between magnetizations is instan-
taneous; i.e., � is frequency independent. This assumption
is valid when the interlayer distance d is much smaller than
the wavelength of light: d � � ¼ 2�=kz.

Substituting Eq. (6) into Eq. (8), we obtain an effective
action for the electric fields in the multilayer system

SEE ¼ �
Z

d!d2rj�ð!Þj2X
n

�½NðnÞ �EðnÞð!Þ�z

� ½Nðnþ1Þ �Eðnþ1Þð�!Þ�z; (9)

where we used the standard relation �ð�!Þ ¼ ��ð!Þ for a
linear response function. Figure 2(b) illustrates this calcu-
lation diagrammatically. By coupling the magnetoelectric
vertices shown in Fig. 2(a) and integrating out the magnetic
field propagator shown by the dashed wavy line, we obtain
the effective action for the electric field in Eq. (9). The
double solid line represents the interlayer correlator of the
anapole moments in Eq. (2).

Let us choose the x and y axes along the crystallographic
direction aþ b and b� a in Fig. 1, so that the vectors

NðnÞ ¼ �Nðnþ2Þ are along x for odd n and y for even n.
Expanding the vector products in Eq. (9), we find two

terms in the sum, for odd and even n. Changing the variable
n ! n� 1 in the latter sum, we find

SEE ¼
Z

d!d2rj�ð!Þj2 X
n odd

�NðnÞ
x Nðnþ1Þ

y EðnÞ
y ð!Þ

� ½Eðnþ1Þ
x ð�!Þ � Eðn�1Þ

x ð�!Þ�: (10)

Using Eq. (2), taking the continuous limit z ¼ nd, where

Eðnþ1Þ
x � Eðn�1Þ

x ¼ 2dð@Ex=@zÞ and 2d
P

n odd ¼
R
dz, and

integrating by parts in z, we get

SEE ¼ ���

2

Z
d!d3rj�ð!Þj2ẑ �

�
Eð!Þ � @Eð�!Þ

@z

�
;

(11)

or, equivalently,

SEE ¼ ��

2

Z
d!d3rj�ð!Þj2Eð!Þ � ½rz �Eð�!Þ�: (12)

Comparing Eq. (11) with the standard expression

S ¼ 1

8�

Z
d!d3k"��ð!; kÞE�ð!; kÞE�ð�!;�kÞ; (13)

we obtain the coefficient � in the second term in Eq. (3)

�ð!Þ ¼ 4���j�ð!Þj2: (14)

Equation (14) shows that the gyrotropic coefficient �ð!Þ is
determined by the chiral order parameter �, the interlayer
magnetic coupling �, and the magnetoelectric coefficient
�ð!Þ [28]. The sign of � depends on the sign of �.
The above derivation was presented for equally spaced

CuO2 layers. However, many cuprates have the bilayer
structure, where the interlayer distances alternate between
d� �d. In this case, the interlayer coupling coefficient in

Eq. (8) is �ðnÞ¼��
 for even and odd n. As a result, we
find an additional term, which is similar to Eq. (10), but

with �!�
 and Eðnþ1Þ
x �Eðn�1Þ

x !Eðnþ1Þ
x þEðn�1Þ

x ¼2Ex.
This term contributes an off-diagonal symmetric term
to the dielectric tensor "xy ¼ "yx ¼ �4��
j�ð!Þj2=d,
which becomes diagonal in the crystallographic basis
of a and b

"aa ¼ �"bb ¼ 4��
j�ð!Þj2=d: (15)

Thus, we find that the helical structure in the presence of
bilayers produces nematicity, i.e., anisotropy between
the crystallographic directions a and b. This is clear by
symmetry in Fig. 1(b), where the pairs of layers (n, nþ 1)

have the preferred direction NðnÞ þNðnþ1Þ along a.
Equations (14) and (15) generate circular and linear
dichroism. If �	 
 , the linear dichroism is much stronger
than the circular one because d � � ¼ 2�=kz.
Figure 3 illustrates these results graphically. The electric

field component EðnÞ ? NðnÞ generates a magnetization

MðnÞ
z at the bottom layer via the magnetoelectric effect in
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Eq. (6). The magnetization MðnÞ
z produces a magnetic field

Bðnþ1Þ
z in the same direction at the top layer via Eq. (8).

This magnetic field induces an electric polarization

Pðnþ1Þ ? Nðnþ1Þ at the top layer via the magnetoelectric
effect in Eq. (7). Taking into account the third layer

nþ 2 (not shown), we find that Pðnþ1Þ / ẑ� ½c2Eðnþ2Þ �
c1E

ðnÞ� with some coefficients c1 and c2. For equally
spaced layers with c1 ¼ c2, we get Eq. (11). For bilayers
with c1 � c2, we get the additional nematic term in
Eq. (15).

Experimental relevance.—Let us discuss possible
experimental evidence for the proposed chiral order in
cuprates. Neutron scattering measurements [29–31] pro-
vide support for the loop currents shown in Fig. 1(a).
However, the NMR experiments [32] find no evidence
for the local magnetic fields predicted by this model. So,
the experimental situation remains controversial. A survey
of experimental evidence supporting loop currents is
presented in Ref. [33].

Although the loop-current order in Fig. 1(a) breaks rota-
tional symmetry in the plane as specified by the vector N,
the neutron scattering measurements [29–31] always
observe the full rotational symmetry. This may be due to
domains with different N, but the spiral order shown in
Fig. 1(b) also provides a natural explanation. While the
system has the tendency to break rotational symmetry in
each CuO2 layer, we argue that it tries to restore macro-
scopic symmetry by orienting the vectors N orthogonally
in the neighboring layers, which is consistent with the
spiral structure.

Moreover, Refs. [29,30] concluded that the microscopic
magnetic moments are not perpendicular to the layers, as
expected from the loop currents in Fig. 1(a), but have an
in-plane component. This effect can be explained by the

spiral order in Fig. 1(b) [34]. Since the magnetic field lines
are twisted in a double-helix structure, they are naturally
tilted with an in-plane component. In the presence of N,
the energy of the system contains the term N � ½r� B� ¼
B � ½r�N� [20]. Since it is linear in B, whereas magnetic
energy goes as B2, the system develops an equilibrium
in-plane magnetic field B / ½r�N� parallel to N in
Fig. 1(b), in qualitative agreement with Refs. [29,30].
Moreover, the total energy decreases as�jr�Nj2, which
favors the spiral structure.
Finally, the recent x-ray measurements [35–37] found

doubling of the unit cell in YBa2Cu3O7�x in the z direction
[38]. Given the bilayer structure of YBa2Cu3O7�x, the new
unit cell contains four CuO2 layers. The fourfold period is
consistent with the spiral order shown in Fig. 1(b).
For bilayer materials, the spiral structure in Fig. 1(b)

naturally produces nematicity, where the oxygen atoms to
the left and right of the copper atom in Fig. 1(a) are not
equivalent to the oxygen atoms above and below. This
nematic symmetry is in qualitative agreement with the
pattern observed in the scanning tunneling measurements
[39], although the same pattern was observed experimen-
tally in bilayer and single-layer cuprates.
Conclusions.—We propose a fourfold chiral state for

cuprates obtained by twisting Varma’s loop-current order
by�=2 in consecutive CuO2 layers. We show that this state
exhibits natural optical activity and derive the gyrotropic
coefficient. It can account for the polar Kerr effect in
cuprates [2–5] without invoking magnetic gyrotropy
[10,11]. For bilayer compounds, we also find nematicity
and linear dichroism. Our model is based on magnetic
coupling between the CuO2 layers and does not require
coherent electron tunneling between the layers and long-
range order in the chiral structure. Other models for the
polar Kerr effect in cuprates invoked magnetoelectric
effects [40] and coupling between loop currents with dif-
ferent N [17], but considered only a single layer, rather
than the spiral multilayer structure.
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