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We study electronic transport in graphene under the influence of a transversal magnetic field BðrÞ ¼
BðxÞez with the asymptotics Bðx ! �1Þ ¼ �B0, which could be realized via a folded graphene sheet in a

constant magnetic field, for example. By solving the effective Dirac equation, we find robust modes with a

finite energy gap which propagate along the fold—where particles and holes move in opposite directions.

Exciting these particle-hole pairs with incident (optical or infrared) photons would then generate a nearly

perfect charge separation and thus a strong magnetophotoelectric or magnetothermoelectric effect—even

at room temperature.
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Introduction.—Photoelectric or thermoelectric effects
facilitate the direct conversion of light or heat into electric
energy and thus are of general interest. Obviously, the C
(charge), P (parity), and T (time reversal) symmetries
must be broken for such an effect to occur. One way to
achieve this is with a magnetic field [1] in a suitable
geometry: trajectories of opposite charge carriers are bent
to antipodal directions. However, the mean free path in
usual materials is too short to generate an efficient charge
separation in that way—at least at room temperature. For
example, the classical cyclotron radius r ¼ mev=ðqeBÞ of
a free electron at room temperature in a magnetic field B
of 1 T [r ¼ Oð�mÞ] is much larger than the typical mean
free path (in the nanometer range). Thus, these effects
are strongly suppressed by multiple scattering events and
dissipation, etc.

This motivates the study of graphene [2–6], since this
system offers a comparably long mean free path and a large
electron mobility, a linear (pseudorelativistic) dispersion
relation at low energies (i.e., near the Dirac points), and
a very large Fermi velocity vF � 106 m=s [3] (see also
Refs. [7,8]). In this case, the pseudorelativistic cyclotron
radius at room temperature in a magnetic field of 1 T is
much smaller (some tens of nanometers). In this regime,
quantum effects should be taken into account—even at
room temperature [4].

In the following, we consider folded graphene in a
transversal magnetic field (see Fig. 1). In principle, the
folding of graphene has already been realized experimen-
tally (see, e.g., Refs. [9,10]). This setup is advantageous
since we avoid real edges in graphene which are typically
not perfect and contain cracks or other defects which might
induce scattering, coupling to vibrational degrees of free-
dom, or further unwanted effects. From a theoretical point
of view, these edges can only be described in idealized
cases, e.g., via effective boundary conditions which then
depend on the concrete realization (e.g., zigzag or armchair
structure [11–13]). The fold is supposed to be terminated
by two metallic leads (with chemical potentials equal to the

Dirac point of graphene) which allow us to measure the
generated current.
Eigenmodes.—We consider length scales (e.g., curvature

radius of fold) far above the lattice spacing of graphene
� 0:25 nm and energies of 1 eV or below. In this limit,
we may describe the low-energy behavior by an effective
Dirac equation in 2þ 1 dimensions (@ ¼ qe ¼ 1)

i��ð@� þ iA�Þ� ¼ 0; (1)

with x� ¼ ½vFt; x; y�, where vF � 106 m=s is the Fermi
velocity [14,15]. The Dirac matrices �� ¼ ½�z; i�y;�i�x�
acting on � ¼ ½c 1; c 2� are related to the Pauli matrices
�x;y;z. In the Landau gauge, the vector potential A� ¼
½0; 0; AðxÞ� generates the magnetic field BðxÞ ¼ @xAðxÞ
with the asymptotics Bðx ! �1Þ ¼ �B0.
In view of the translation symmetry in t and y [16], we

can make the separation ansatz for the modes

�ðt; x; yÞ ¼ expf�iEtþ ikyg�E;kðxÞ; (2)

arriving at the two coupled equations

ivF½@x þ kþ AðxÞ�c E;k
2 ðxÞ ¼ Ec E;k

1 ðxÞ;
ivF½@x � k� AðxÞ�c E;k

1 ðxÞ ¼ Ec E;k
2 ðxÞ: (3)

Hence, we can choose c E;k
1 ðxÞ to be real, for example,

while c E;k
2 ðxÞ is imaginary. We observe a particle-hole

symmetry since replacing E ! �E and c E;k
2 ! �c E;k

2

yields a new solution ��E;k ¼ �z�E;k ¼ ð�E;kÞ�.
The two first-order equations (3) can be combined into

one second-order equation

FIG. 1. Sketch of the considered setup.
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v2
F½kþ AðxÞ þ @x�½kþ AðxÞ � @x�c E;k

1 ¼ E2c E;k
1 ; (4)

and analogously for c E;k
2 with @x $ �@x. This equation

can be cast into the form of a one-dimensional Schrödinger

equation H kc
E;k
1 ¼ E2c E;k

1 with the Hamiltonian
H k ¼ v2

Fð�@2x þV kÞ containing the effective potential
V k ¼ ½kþ AðxÞ�2 þ A0ðxÞ. Since this Hamiltonian is

self-adjoint H k ¼ H y
k and the potential V k has the

asymptotics V kðx ! �1Þ ¼ 1, we get a complete set
of discrete, orthonormal, and localized (in x) eigenfunc-

tions c E;k
1 ðxÞ for every value of k. These modes are non-

degenerate for each k; i.e., the energy bands EðkÞ do not
cross [17]. Because of the particle-hole symmetry, each

of these eigenfunctions c E;k
1 ðxÞ corresponds to a pair of

modes ��E;kðxÞ of the original problem (3) with opposite
energies. Furthermore, withDk ¼ kþ AðxÞ � @x, we may

write H k ¼ v2
FD

y
kDk which shows that H k is nonneg-

ative (and thus E is real). In addition, H k cannot have a

zero eigenvalue E ¼ 0 since the corresponding c E¼0;k
1 ðxÞ

must satisfy Dkc
E¼0;k
1 ¼ 0, which gives c E¼0;k

1 ðxÞ /
expfkxþ R

dxAðxÞg and analogously for c E¼0;k
2 ðxÞ. Due

to the asymptotics Bðx ! �1Þ ¼ �B0 and thus Aðx !
�1Þ � B0jxj, this solution is not normalizable and thus
H k is strictly positive for any k. Ergo, the modes do
always have a finite energy gap E � 0.

Current.—The current density of the modes reads

j�E;k ¼ vF
��E;k�

��E;k ¼ vF�
y
E;k�

0���E;k: (5)

The zeroth component j0 ¼ vF� is simply given by the

density � ¼ jc E;k
1 j2 þ jc E;k

2 j2. As one would expect, jx

vanishes identically since c E;k
1 ðxÞ is real and c E;k

2 ðxÞ is
imaginary [cf. Eq. (3)]. Using the same argument, the
current density in the y direction simplifies to

jy ¼ ivFðc E;k
2 Þ�c E;k

1 � H:c: ¼ �2ivFc
E;k
1 c E;k

2 : (6)

From the triangle inequality (2jabj � ja2j þ jb2j), we may
infer jjyj � vF�; i.e., the speed of the associated charge
carriers is at most the Fermi velocity vF (as expected).

The total current in the y direction can be obtained by

Jy ¼
Z

dxjy ¼ � 2v2
F

E

Z
dxc E;k

1 ½kþ AðxÞ�c E;k
1 ; (7)

where we have used vFDkc
E;k
1 ¼ iEc E;k

2 from Eq. (3). For
the lowest E2 modes (for a given k), i.e., the uppermost
negative mode and the lowermost positive mode, the wave

function c E;k
1 ðxÞ corresponds to the ground state of H k

and hence it is nonzero for all x (node theorem [17]). Since

one can repeat the same line of argument for c E;k
2 ðxÞ, the

integrand jy ¼ �2ivFc
E;k
1 c E;k

2 is nonzero for all x and

hence the current Jy is finite. But other modes could have
Jy ¼ 0 at some k value. However, for large enough
k >�Amin ¼ �minfAðxÞg, the integrand in the above

equation c E;k
1 ½kþ AðxÞ�c E;k

1 is positive for all x and thus

the current has a finite value.
Furthermore, the current Jy is related to the slope dE=dk

of the dispersion relation, i.e., the group velocity. Writing

Eq. (3) as ĤE;kj�E;ki ¼ Ej�E;ki, we find

Jy ¼ �h�E;kj dĤE;k

dk
j�E;ki ¼ �dE

dk
; (8)

where we have used the normalization h�E;kj�E;ki ¼ 1.
Together with Eq. (7) we find that particles with E> 0 and
holes with E< 0 have the opposite current (and group
velocity); i.e., all particles (with k >�Amin) move to the
right and all holes move to the left. In this way, one obtains
a (nearly) perfect charge separation.
Asymptotics.—It is illustrative to study the limiting cases

where jkj is large compared to the scales set by themagnetic
field (but still well below the inverse lattice spacing). For
large and positive k, the potentialV k can be approximated
byV k � k2 þ 2kAðxÞ. Thus, to lowest order in k, we obtain
E � �vFk; i.e., these modes propagate with a speed close
to the Fermi velocity. Going to the next order in k, we may
expand AðxÞ around its minimum at x0, where the magnetic
fieldBðx0Þ ¼ 0 vanishes AðxÞ � Amin þ A00ðx0Þðx� x0Þ2=2
and obtain harmonic oscillator eigenfunctions centered at x0
[assuming that A00ðx0Þ ¼ B0ðx0Þ � 0]. Since the stiffness of
the potential behaves as kB0ðx0Þ, the modes are strongly
localized around x0 for large k and basically propagate
along the x0 line where the magnetic field vanishes. For
fixed and large k, these modes have equidistant values of E

where the distance scales with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B0ðx0Þ

p
.

For large and negative k values, the minima of the
potential V k are given by Aðx�Þ þ k ¼ 0 and thus the
modes are localized at large and nearly opposite values
of x� ��jk=B0j due to Aðx ! �1Þ � B0jxj. In this
regime, AðxÞ is approximately linear and thus we recover
the harmonic oscillator eigenfunctions corresponding to
the usual (pseudorelativistic) Landau levels in a constant
magnetic field [18]. Note, however, that the eigenfunctions

c E;k
1 ðxÞ are linear superpositions of the Landau levels

centered at xþ and x� with the same energy E. In this
limit, the eigenenergies E do not depend on k anymore
(En

L ¼ �vF

ffiffiffiffiffiffiffiffiffiffiffi
2B0n

p
with n 2 N) and thus the current Jy

also vanishes. Hence these modes are not so interesting for
our purpose.
Matrix elements.—Now we are in the position to study

the excitation of particle-hole pairs by incident photons
(in the infrared or optical regime). In second quantization,
the interaction Hamiltonian reads

Ĥint ¼
Z

dxdy �̂���Â��̂; (9)

where the photon field operator Â� contains the creation

and annihilation operators ây!;k;� and â!;k;� for frequency

!, wave number k, and polarization �. The Dirac field
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operator �̂ is a linear combination of the annihilation
operators for particles ĉE>0;k�E>0;k and the creation

operators for holes ĉy
E0<0;k0�E0<0;k0 .

If we now consider the transition matrix elements

houtjÛintjini with an initial photon jini ¼ ây!;k;�j0i and a

final particle-hole pair jouti ¼ ĉyE>0;kĉ
y
E0<0;k0 j0i, we get to

first order in perturbation theory

A!;k;�
E;k;E0;k0 ¼

1
ffiffiffiffiffiffiffi
2!

p
Z

dtdxdy ��E;k�
�A�

��E0;k0

� eþiEt�ikye�i!tþik	re�iE0tþik0y; (10)

where A�
� encodes the polarization of the photon. As

usual, the t integral gives �ð!� Eþ E0Þ, i.e., energy
conservation. Since the wavelength of the photons under
consideration (in the optical or infrared regime) is much
larger than the typical length scales of the electronic modes
in graphene, we may neglect the photon wave number k.
Therefore, the y integral yields �ðk� k0Þ; i.e., we excite
particle-hole pairs with the same wave number k ¼ k0. The
remaining x integral reads

A!¼E�E0;k�0;�
E;k;E0;k0¼k

/
Z

dx ��E;k�
�A�

��E0;k0 : (11)

Let us first assume A�
� ¼ const and consider the transition

between modes of the same E2 (i.e., E ¼ �E0), such as the
uppermost negative mode (for a given k) and the lowermost
positive mode (cf. Fig. 2). In this case, we may use the
aforementioned particle-hole symmetry ��E;k ¼ �z�E;k

and simplify the integrand via ��E;k�
��E0;k ¼

��E;k�
��z�E;k. Inserting �1 ¼ i�y and �2 ¼ �i�x and

using the properties of the Pauli matrices, we see that the
matrix element for the photon polarization in the x direc-
tion Ax yields the same expression as in the current Jy

[cf. Eq. (5)] and vice versa. Consequently, the matrix
elements (11) vanish for the photon polarization in the y
direction, but yield a nonzero contribution for the photon
polarization in the x direction, at least if k is large enough
[cf. the discussion after Eq. (7)]. Moreover, the modes with

large currents Jy and thus large group velocities dE=dk

also have large matrix elements, which enhances the mag-
netophotoelectric or magnetothermoelectric effect we are
interested in.
Pseudoparity.—Further selection rules arise if we

assume reflection symmetry Bð�xÞ ¼ �BðxÞ and thus
Að�xÞ ¼ AðxÞ which yields the additional symmetry

c E;k
1 ð�xÞ ¼ �ic E;k

2 ðxÞ ¼ iP E;kc
E;k
2 ðxÞ; (12)

where we call P E;k ¼ �1 the pseudoparity of this mode.

Recalling the particle-hole symmetry ��E;k ¼ �z�E;k,

we find P�E;k ¼ �P E;k. The pseudoparity of a given

mode can be determined easily for large and positive k,

where we have ic E;k
2 � vFkc

E;k
1 =E from Eq. (3). Since the

wave function c E;k
1 ðxÞ of the lowest positive mode (for

large and positive k) corresponds to the ground state of a
harmonic oscillator, it is Gaussian and symmetric

c E;k
1 ð�xÞ ¼ c E;k

1 ðxÞ. Hence this mode has an even pseu-

doparity P E;k ¼ þ1. The wave function c E;k
1 ðxÞ of the

next mode corresponds to the first excited state of a har-

monic oscillator and thus is antisymmetric c E;k
1 ð�xÞ ¼

�c E;k
1 ðxÞ, which gives an odd pseudoparity P E;k ¼ �1

and so on. Together with the above result P�E;k ¼ �P E;k

we find that, for a fixed k, the pseudoparity of the modes
alternates if we go up and down in energy. Assuming that
the modes deform continuously if k changes [i.e., that AðxÞ
is sufficiently well behaved], we may deduce an alternating
pseudoparity for all k.
Now, the integrand in the matrix elements (11) behaves

as c E;k
1 ðxÞc E0;k

2 ðxÞ � c E;k
2 ðxÞc E0;k

1 ðxÞ for the two photon
polarizations. Inserting Eq. (12) and integrating over x,
we see that the matrix elements (11) between modes of
the same pseudoparity vanish for photon polarizations
in the x direction whereas the transition between modes
of opposite pseudoparity is forbidden for the other
polarization.
Yet another set of selection rules can be obtained in the

asymptotic regimes. For large and positive k we only get
transitions between modes of opposite energies (due to the
orthogonality of the harmonic oscillator eigenfunctions).
In the opposite limit (large and negative k), we recover
the well-known [18] properties of the Landau levels
En
L ¼ �vF

ffiffiffiffiffiffiffiffiffiffiffi
2B0n

p
with n 2 N where we only get transi-

tions for n ! n� 1.
Polarization dependence.—So far, we have discussed

the case A�
� ¼ const in Eq. (11). This is certainly a good

approximation if the polarization of the incident photon
points in the y direction, i.e., is aligned with the symmetry
of our setup. However, for the other (x) polarization, A�

� in

Eq. (11) should be replaced by the local projection of the
photon wave function A�

� onto the graphene plane, i.e.,

become x dependent A�
�ðxÞ. The profile of A�

�ðxÞ then

depends on the incidence angle of the photon. If the photon
is incident from the top, i.e., propagates parallel to the

FIG. 2. Dispersion relation of the lowest bands with � ¼ k‘B
and E ¼ "vF

ffiffiffiffiffiffiffiffi
2B0

p
and sketch of the photoabsorption.
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external magnetic field k k B, the two graphene sheets
(top and bottom) have opposite projections. Thus A�

�ðxÞ
is antisymmetric A�

�ð�xÞ ¼ �A�
�ðxÞ and the above selec-

tion rules are reversed. If the photon propagates perpendic-
ularly through the fold (k ? B), we get a symmetric
projection function A�

�ð�xÞ ¼ A�
�ðxÞ which vanishes far

away from the folding region (i.e., for large jxj). In this
case, the above selection rules do still apply, but the matrix
elements might be reduced a bit.

Example profile.—In order to visualize the behavior of
the modes by means of a concrete example, let us consider
a magnetic field of the following form

BðxÞ ¼ B0 tanhð�xÞ; (13)

where 1=�measures the width of the fold. For � ! 1, we
get a step function BðxÞ ¼ B0sgnðxÞ with the vector poten-
tial AðxÞ ¼ B0jxj (cf. Ref. [19]). In this limit, the mode
equation (3) can be solved exactly (piecewise) in terms of
parabolic cylinder functions (cf. Ref. [20]). Incidentally,
the spectrum for such a step function BðxÞ ¼ B0sgnðxÞ can
also arise for some edge states [12,13].

However, such a step function can only be a good
approximation if k is not too large and if the curvature
radius of the graphene fold is much smaller than the typical

magnetic length scale ‘B ¼ 1=
ffiffiffiffi
B

p
. For 1 T, we get ‘B �

26 nm while the radius of curvature cannot be too small
since it should be much larger than the lattice spacing
� 0:25 nm. Thus, let us consider a finite � and take � ¼
1=‘B as an example. The spectrum can then be obtained
numerically and is given in Fig. 2. The spectra for other
values of � are qualitatively similar. As demonstrated
above, the two lowest modes are monotonically increasing
or decreasing, whereas the higher modes can have
dE=dk ¼ 0 at some small k values. For large jkj, we
recover the asymptotics discussed above.

Conclusions.—Via the effective Dirac equation (1), we
studied the low-energy behavior of electronic excitations in
graphene under the influence of a transversal magnetic
field BðxÞ with the asymptotics Bðx ! �1Þ ¼ �B0.
Such a field profile BðxÞ arises within a folded graphene
sheet in a constant magnetic field (for example, see Fig. 1).
Based on general arguments, we find a discrete set of
modes (see also Ref. [21]) which are localized near the
fold (i.e., the zero of the magnetic field) and propagate
along it with a significant fraction of the Fermi velocity.

Due to particle-hole symmetry, the dispersion relations
EðkÞ of these modes (cf. Fig. 2) are symmetric around the
E ¼ 0 axis, but never cross it. Thus, these modes have a
finite energy gap (for each k) with the characteristic energy
scale being set by the (pseudorelativistic) Landau level
energy EL ¼ vF

ffiffiffiffiffiffiffiffi
2B0

p
. For a magnetic field of 1 T, we

have EL � 36 meV, which corresponds to 400 K. The
group velocity dE=dk is related to the current Jy and we
find that particles and holes move in opposite directions.
Apart from some minor exceptions, all particles move to

the right and all holes move to the left—i.e., we get a nearly
perfect charge separation. In view of this predetermined
direction, the finite energy gap, and the fact that these
localized modes are qualitatively independent of the shape
of AðxÞ, we expect that they are quite robust against per-
turbations. In addition, we consider the propagation within
a (curved) graphene sheet, i.e., far away from any edges
with defects, etc.
Finally, we study the excitation of particle-hole pairs in

these modes via incident infrared or optical photons, i.e.,
magnetophotoelectric or magnetothermoelectric effects.
The matrix elements (10) display a distinct dependence
on the polarization and the incidence angle of the photons,
which should enable us to distinguish this effect from other
phenomena experimentally. Furthermore, we find that
those modes with comparably large group velocities (i.e.,
large currents) tend to have large matrix elements (at least
for low-energy transitions) and thus are more strongly
coupled to the incident photons—i.e., ‘‘nature favors our
goal.’’
Outlook: electric field.—If we apply an additional elec-

tric field perpendicular to the fold and the magnetic field,
we get an electrostatic potential �ðxÞ ¼ �vFAðxÞ with
some constant �. If we have j�j< 1 (i.e., if the electric
field is subcritical), we may transform � away by an
effective Lorentz boost in the y direction with a velocity
vboost ¼ �vF where vF plays the role of the speed of light
[22]. In the Lorentz boosted frame, we get the same modes
as discussed above, but with a reduced magnetic field

B0
0 ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. Since this field enters the characteristic

energy scale via vF

ffiffiffiffiffiffiffiffi
2B0

p
, the dispersion relation after

transforming back to laboratory coordinates reads

E ! E0 ¼ Eð1� �2Þ3=4 � kvF�; (14)

i.e., the spectrum in Fig. 2 is compressed and tilted.
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