
Electronic Structure and van der Waals Interactions in the Stability and Mobility
of Point Defects in Semiconductors

Wang Gao and Alexandre Tkatchenko*

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
(Received 3 January 2013; revised manuscript received 3 June 2013; published 23 July 2013)

We study the role of electronic structure (band gaps) and long-range van der Waals (vdW) interactions

on the stability and mobility of point defects in silicon and heavier semiconductors. Density functional

theory calculations with hybrid functionals that contain part of the Hartree-Fock exchange energy are

essential to achieve a reasonable description of defect electronic levels, leading to accurate defect

formation energies. However, these functionals significantly overestimate the experimental migration

barriers. The inclusion of screened vdW interactions further improves the description of defect formation

energies, significantly changes the barrier geometries, and brings migration barrier heights into close

agreement with experimental values. These results suggest that hybrid functionals with vdW interactions

can be successfully used for predictions in a broad range of materials in which the correct description

of both the electronic structure and the long-range electron correlation is essential.
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The diffusion of defects in semiconductors is a funda-
mental process of matter transport. Defects are abundant in
essentially all real materials and they often significantly
modify the electronic, optical, and magnetic properties of
solids. For example, the electron spin of donors in Si and
vacancy defects in SiC have been investigated for their
possible use as components of quantum devices [1,2].
Therefore, the study of defects is important from both
fundamental and technological points of view.

Here we focus on understanding the interplay between
electronic structure and nonlocal correlation effects for the
fundamental benchmark case of intrinsic point defects in
bulk Si and heavier semiconductors. Two kinds of native
point defects in Si, self-interstitials and vacancies, have
been intensively investigated both experimentally and
theoretically. However, the understanding of self-diffusion
in Si remains incomplete, despite decades of seminal work
on the subject [3–23]. Using secondary ion mass spectrom-
etry (SIMS), two groups obtained identical conclusions
that the vacancies mechanism is preferred over the inter-
stitials mechanism in self-diffusion at low temperature
while the interstitials mechanism can be dominant at
high temperature [5,6]. Correspondingly, the diffusion
activation energies (sum of the formation energy and
migration barrier HA ¼ Hf þHm) were HA;I ¼ 4:96 eV

and HA;I ¼ 4:42 eV proposed by Bracht et al. based on B,

As, and P diffusion experiments [6], and HA;I ¼ 4:95 eV
(extracted from the analysis of Zn diffusion in Si [8]) and
HA;V ¼ 3:6 eV proposed by Shimizu et al. [5]. In contrast,

SIMS experiments by Ural et al., where the activation
energy HA of the interstitials was extracted from P and
Sb diffusion experiments [9], found that both interstitials
and vacancies have comparable contribution to self-
diffusion over a wide temperature range (800–1100 �C).
The corresponding measured activation energies were

HA;I ¼ 4:68 eV and HA;V ¼ 4:86 eV [10]. Recent SIMS

experiments by Vaidyanathan et al. indicated that the
interstitial mechanism is dominant in the self-diffusion at
the lower temperature range of 650–1000 �C [13].
First-principles calculations have been instrumental in the

understanding of point defects in Si [14–23]; however, the
computation of point defect properties is still fraught with
difficulties. Density functional theory (DFT) calculations
with the local-density approximation (LDA) or generalized
gradient approximation (GGA) usually underestimate defect
formation energies due to the electron self-interaction error.
Furthermore, both LDA and GGA miss the long-range van
der Waals (vdW) interactions for nonhomogeneous electron
densities. Nevertheless, it is remarkable that GGAs often
produce fairly good results for migration barrier heights of
point defects [24]. Hybrid DFT functionals mitigate the
electron self-interaction error, and yield defect formation
energies in better agreement with higher-level GW and
quantum Monte Carlo (QMC) calculations [17,18,21].
However, these functionals still miss the long-range vdW
interactions and often overestimate migration barriers of
point defects [23]. In principle, accurate defect energetics
could be determined by explicit many-electron methods
(self-consistent GW or QMC calculations) [16–18,21].
Unfortunately, the application of GW and QMC methods
is limited to small supercells due to their rather large
computational cost. Recently, Bruneval proposed a range-
separation scheme treating short-range correlation effects
within LDA and long-range with the random-phase approxi-
mation (RPA) for the correlation energy (called rs-LDA-RPA
in the following) [23]. While rs-LDA-RPA is a promising
method, it is still more expensive than DFT calculations,
lacks atomic forces at present, overestimates migration bar-
riers, and could be affected by the limitations of the non-self-
consistent RPA correlation energy [25].
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In this Letter, we study the stability and diffusion of
point defects in bulk Si and heavier semiconductors using
hybrid DFT calculations including screened long-range
vdW interactions. This approach can be efficiently applied
to large supercells required for realistic modeling of
defects in semiconductors. Furthermore, the hybrid
DFTþ vdW method allows us to accurately describe
both the electronic properties and the structures of semi-
conductors on equal footing [26,27]. Specifically, we use
the Heyd-Scuseria-Ernzerhof functional (HSE) [28],
coupled with the recently developed method for screened
long-range vdW interactions [29]. The inclusion of vdW
interactions has been shown to consistently improve the
lattice constants, cohesive energies, and bulk moduli for
ionic and semiconductor solids over standard DFT func-
tionals [27,30]. The accurate treatment of electrodynamic
screening in the DFTþ vdW approach is crucial for both
pristine and defect-containing semiconductors, as it
reduces the vdW C6 coefficients for ‘‘atoms’’ in semi-
conductors by a factor of 1.6–1.8 [29], and yields results
in agreement with experiments and explicit time-
dependent DFT (TDDFT) calculations [27]. We find that
HSEþ vdW solves the underestimation of Perdew-Burke-
Ernzerhof (PBE) on defect formation energies and the
overestimation of HSE on defect migration barriers,
thereby yielding both accurate formation energies and
migration barriers. For multiatom vacancies in Si, and
point defects in heavier and more polarizable semiconduc-
tors (such as Ge, GaAs, InP, and InAs), vdW interactions
are shown to play an increasingly larger role on their
stabilities.

We mainly focus on neutral point defects in this Letter:
split-h110i (X), hexagonal (H), tetrahedral (T), and mono-
vacancy (V), because the neutral defects are dominant
under intrinsic doping conditions [31,32]. All total energy
calculations were performed using the FHI-aims all-
electron code with ‘‘tight’’ computational settings [33].
For hybrid functional calculations, we used an efficient
resolution-of-the-identity implementation for the compu-
tation of four-center integrals [34]. For comparison pur-
poses, the standard PBE [35] and HSE functionals were
employed, as well as the PBEþ vdW and HSEþ vdW
functionals [36]. Our careful convergence tests demon-
strate that the interstitials (including vdW interactions)
converge well with a 64 atoms supercell, while vacancies
require cells with 216 atoms due to the presence of Jahn-
Teller (JT) distortion. This finding is in agreement with
previous work [23]. We adopt a k-point grid of
4� 4� 4 (2� 2� 2) for 64 (216) atom supercells.

The results of our calculations for the formation energy
of four point defects in Si are shown in Table I, where
comparisons are made with other calculations in the litera-
ture and with experimental data. Because of the electron
self-interaction error, the PBE functional underestimates
the formation energy of interstitials by about 0.7 eV

relative to the HSE functional. Both PBE and HSE func-
tionals predict that the X and H interstitials have similar
stability and are 0.15–0.36 eV more stable than the T
interstitial. On the other hand, the tetrahedric configuration
of the vacancy is about 0.43 eV (0.15 eV) less stable than
the X interstitials when using the HSE (PBE) functional.
Once the vacancy configuration is relaxed, it experiences
JT distortion, and becomes more stable than the X inter-
stitial, having formation energy Hf;PBE ¼ 3:58 eV and

Hf;HSE ¼ 4:19 eV. The above results are consistent with

previous PBE, HSE, and rs-LDA-RPA studies in the litera-
ture [16–18,21,23,37].
In contrast to the well-known role of exact exchange, the

influence of long-range vdW interactions on defect forma-
tion energies has not been assessed before. vdW interac-
tions are part of the long-range electron correlation energy
and they are missing from all semilocal and hybrid
functionals. The influence of vdW interactions on binding
energies of molecular systems has been studied in much
detail, but the role of vdW interactions on cohesion in
semiconductor and metallic solids is still under debate
[38]. Even in covalently bound semiconductors, such as
Si and Ge, the long-range vdW energy has been found to
contribute around 0.2 eV per atom [27]. Here we study the
effect of vdW interactions on the defect formation energy,
focusing on the HSE and HSEþ vdW results in Table I.
The vdW interactions only slightly change the structures of
interstitials and vacancies, increasing the distance between
the defect atom and the surrounding atoms by less than
0.02 Å. In the case of interstitials, vdW interactions
decrease the formation energy of X, H, and T by 0.02,
0.09, and 0.23 eV, respectively. Consequently, the energy
difference between the X and T defects is decreased from
0.31 eV (by HSE) to 0.10 eV (by HSEþ vdW). Thus, the
three interstitials are likely to coexist in Si due to the effect
of vdW interactions. The vdW interactions reduce the
difference between T and V defects from 0.55 to 0.13 eV,
making the formation of interstitials almost as likely as that
of the vacancies. As expected, the contribution of vdW
interactions to the formation energy is much smaller than

TABLE I. Formation energies of interstitials (X, H, T) and
vacancy (V) point defects with different theoretical methods
along with experimental estimates.

X H T V

PBE 3.69 3.75 3.90 3.58

PBEþ vdW 3.75 3.73 3.75 3.65

HSE 4.43 4.49 4.74 4.19

HSE [23] 4.40 4.52

HSEþ vdW 4.41 4.40 4.51 4.38

rs-LDA-RPA [23] 4.49 4.74 4.33

GW [21] 4.40 4.46 4.51

QMC [17] 4.94 5.05 5.13

Experiments [3–5,7–12] 4.2–4.7 2.1–4.0
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covalent bonding; nevertheless, vdW interactions are rele-
vant in determining the relative stability of point defects.
Overall, we note that our HSEþ vdW formation energies
are in very good agreement with GW calculations [21], the
recent rs-LDA-RPA study [23], and experimental data
for the interstitials (4.2–4.7 eV). Both our results and the
rs-LDA-RPAvalues for the vacancy formation energy sug-
gest a larger value than most of the experimental estimates
(2.1–4.0 eV) [3–5,7–12]. QMC calculations yield forma-
tion energies of interstitials that are somewhat larger than
those found with HSEþ vdW, GW, and rs-LDA-RPA
methods. However, QMC values are very sensitive to the
employed calculation parameters and exhibit variations of
up to 0.3 eV between different studies [16–18].

We then turn to the question of why the effect of vdW
interactions on the formation energy is strongly dependent
on the defect geometry. First, we reveal the sensitive
dependence of polarization on the nature of the defect.
Figure 1 illustrates the changes in the vdW C6 coefficients
around defect sites for the four studied defects (X, H, T,
and V) upon including the electrodynamic screening [29].
Table II shows the screened atomicC6 coefficients [39] as a
function of the atom distance from the defect center. In the
case of interstitials, the C6 coefficients of the atoms around
the defect are significantly increased compared to the
pristine Si bulk (168 hartree bohr6) [27,29]. It is notewor-
thy that the screened C6 coefficients of the pristine Si
bulk are in excellent agreement with those obtained
using TDDFT. The polarization effects are relatively far-
reaching, extending as far as 5 Å from the defect center. In
addition, the polarization strongly depends on the nature of

the defect, being roughly one dimensional for the X inter-
stitial, two dimensional for the H interstitial, and three
dimensional for T and V defects. The static polarizability
follows the same trend as the C6 coefficients, indicating
that the interstitials significantly influence the electrostatic
screening in Si [40]. The dependence of polarization on
the nature of the defect suggests an explanation for the
observed trend in vdW interactions. The low-dimensional
effect of H and X interstitials on the polarization leads to
an almost negligible contribution from vdW interactions
for these two defects, while a more pronounced vdW
energy contribution for the T interstitial stems from a
larger ‘‘vdW sphere’’ that encloses the most polarizable
Si atoms. The formation of the vacancy is accompanied by
a reduction in vdW interactions, since the loss of an atom
from the Si bulk is not compensated by an appreciable gain
in polarization around the vacancy site (see Table II).
In addition to the formation energy, an important ingre-

dient to understand defect mobility is the migration barrier.
Here the theoretical situation is much less certain when
compared with the defect formation energies, for which
state-of-the-art first-principles methods are in good agree-
ment, as shown in Table I. To the best of our knowledge,
direct calculations of migration barriers using GW and
QMCmethods are not available. Figure 2 shows the energy
diagram of migration barriers for interstitials and vacan-
cies. In the case of interstitials, our HSE calculations reveal
that the H-H pathway is dominant with the migration
barrier Hm;H-H ¼ 0:47 eV (Hm;H-X ¼ 0:75 eV, Hm;H-T ¼
0:53 eV, and Hm;T-X ¼ 0:67 eV). In contrast to the defect

formation energy, where HSE exhibits a good agreement
with higher-level calculations and experimental values, there
is a marked difference between HSE (0.47–0.75 eV) and
experiment (0.20 eV [41]) for the migration barrier height.
Upon including the vdW interactions, all HSE migration
barriers are decreased when using the HSEþ vdW
approach. In particular, the barrier of the H-X pathway is

FIG. 1 (color online). The crystal structure of theX,H, T, andV
defects in Si. For V the most stable JT-distorted configuration is
shown. The size of the balls indicates the change in the atomic vdW
C6 coefficients [39]. The C6 coefficients increase with increasing
size of the balls (in the order blue-green< blue< green< red).

TABLE II. Atomic vdW C6 coefficients [39] (in hartree bohr
6)

as a function of the atomic distance (L in Å) from the defect
center. Zi labels the ith nearest neighbor (x ¼ 0 corresponds to
the defect). For X, H, and T, a 64 atom cell was used. For V, 216
atom cell was used. Calculations for X, H, and T defects in a
larger 216 atom supercell increase the C6 values by less than
8 hartree bohr6.

Z0 Z1 Z2 Z3 Z4 Z5

X C6 322 170 186 198 186 161

L 0 2.33 2.48 2.82 5.08 6.01

H C6 524 215 196 206 164 160

L 0 2.41 2.42 4.66 5.88 6.93

T C6 503 194 174 204 162 161

L 0 2.47 2.71 4.81 5.91 6.05

V C6 � � � 206 182 174 165 168

L 0 1.98 3.55 3.80 5.78 5.89

Bulk [27,29] C6 168
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decreased from 0.75 to 0.29 eV. Notably, this value is in
excellent agreement with the experimental value of 0.20 eV
measured at cryogenic temperatures (� 273 to �150 �C)
[41]. To further elucidate the effect of vdW interactions on
barrier heights, we calculated the diffusion of bond-centered
hydrogen (Hþ

BC and HBC) and oxygen in Si (Oi) (Table III).

Wefind that vdWinteractions decrease themigration barriers
of these defects, which is analogous to the case of interstitials
and vacancies. Importantly, themigration barriers ofHþ

BC and

Oi by HSEþ vdW are also in agreement with experimental
values [43–48]. Therefore, the decrease of defect migration
barriers in semiconductors under the influence of vdW inter-
actions seems to be a rather general phenomenon. One can
see from the insets in Fig. 2 that the transition state structure
of theH-X pathway is substantiallymodified upon including
the vdW energy, while those of other pathways are almost
unchanged (not shown). The vdW interactions decrease the
lattice constant of Si bulk by 0.02 Å, changing the configu-
ration of the transition state (H-X pathway) bydecreasing the
interatomic distance between the defect atom and its nearest
neighbors by asmuch as 0.2 Å. It is noteworthy that the exact
exchange andvdWinteractionshave anopposite effect on the
migration barriers. In the case of Si vacancy, HSEþ vdW

yields a migration barrier Hm;V-V ¼ 0:49 eV, which once

again is in excellent agreement with the experimental value
of 0.45 eVat cryogenic temperatures [42].
We can use the HSEþ vdW method to calculate the

activation energy for defect diffusion in Si, which is just
the sum of the formation energy and the migration barrier.
We find that the interstitial diffusion mechanism
(HA;H-X ¼ 4:69 eV) is slightly preferred over the vacancy

mechanism (HA;V-V ¼ 4:87 eV). These values are in good

agreement with the proposed values HA;I ¼ 4:68 eV and

HA;V ¼ 4:86 eV [10] based on the diffusion of P and Sb

atoms in Si [9].
We also generalize our conclusions regarding the rele-

vance of vdW interactions for studying defects in heavier
semiconductors, including Ge, GaAs, InP, and InAs
(Table IV). In these cases, vdW interactions are found to
play an increasingly important role on the stability of the
vacancy, increasing the formation energy by as much as
11.2% compared to 4.6% effect in Si. This is due to the
more polarizable nature of these semiconductors than Si.
We also find that vdW interactions play a larger role for
multiatom vacancies and more complex defect structures
in Si, increasing the formation energy by 12.7% for hex-
avacancy V6 (EvdW ¼ 1:49 eV). These results provide an
interesting avenue for future work.
In conclusion, the HSEþ vdW method solves the

underestimation of PBE on defect formation energies and
the overestimation of HSE on defect migration barriers,
yielding novel insights into the stability and mobility of
point defects in semiconductors. Notably, our calculations
successfully explain a series of experimental observations
for the diffusion of interstitials, vacancies, and impurities
in Si. These results suggest that the HSEþ vdW method

FIG. 2 (color online). Relative energies and migration barriers
for different diffusion pathways of interstitials and vacancies in
Si. The insets show the geometry of the transition state along
the H-X pathway, determined with and without including vdW
interactions.

TABLE III. Migration barrier of interstitials (Si-I), vacancies
(Si-V), bond-centered hydrogen (Hþ

BC and HBC), and oxygen in

Si (Oi). All values are reported in eV.

PBE PBEþ vdW HSE HSEþ vdW Experiments

Si-I 0.40 0.25 0.47 0.29 0.20 [41]

Si-V 0.51 0.39 0.60 0.49 0.45 [42]

Hþ
BC 0.54 0.40 0.72 0.58 0.48 [43–45]

HBC 0.42 0.28 0.52 0.39

Oi 2.23 2.03 2.92 2.73 2.44–2.56 [46–48]

TABLE IV. Formation energy (eV) of the vacancies for the
heavier semiconductors and Si (the monovacancy V in Ge, the
As (In) vacancy VAs ðVInÞ in GaAs and InAs (InP and InAs), and
the P (Ga) vacancy VP ðVGaÞ in InP (GaAs); multiatom vacancies
in Si). The chemical potential� has two limits for each of GaAs,
InP, and InAs. � indicates the fraction of vdW energy contribu-
tion to the formation energy.

� HSE HSEþ vdW �

Ge-V 3.21 3.47 7.5%

GaAs-VAs As-rich 3.96 4.23 6.4%

Ga-rich 3.01 3.23 6.8%

InP-VP In-rich 3.12 3.33 6.3%

P-rich 2.28 2.49 8.4%

InAs-VAs In-rich 3.04 3.31 8.2%

As-rich 2.15 2.42 11.2%

Si-V2 6.08 6.56 7.3%

Si-V3 8.45 9.20 8.2%

Si-V4 8.07 9.18 12.1%

Si-V5 9.32 10.61 12.2%

Si-V6 10.28 11.77 12.7%
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can be employed for predictions in materials where the
correct description of electronic structure (band gaps) and
the long-range electron correlation is essential.
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Dyakonov, A. A. Soltamova, P. G. Baranov, V.A. Ilyin,
and G.V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012).

[3] S. Dannefaer, P. Mascher, and D. Kerr, Phys. Rev. Lett. 56,
2195 (1986).

[4] P.M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod.
Phys. 61, 289 (1989).

[5] Y. Shimizu, M. Uematsu, and K.M. Itoh, Phys. Rev. Lett.
98, 095901 (2007).

[6] H. Bracht, H.H. Silvestri, I. D. Sharp, and E. E. Haller,
Phys. Rev. B 75, 035211 (2007).

[7] H. Bracht, N.A. Stolwijk, and H. Mehrer, Phys. Rev. B 52,
16 542 (1995).

[8] H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev.
Lett. 81, 393 (1998).

[9] A. Ural, P. B. Griffin, and J. D. Plummer, J. Appl. Phys. 85,
6440 (1999).

[10] A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett.
83, 3454 (1999).

[11] H. Bracht, J. F. Pedersen, N. Zangenberg, A.N. Larsen,
E. E. Haller, G. Lulli, and M. Posselt, Phys. Rev. Lett. 91,
245502 (2003).

[12] V.Ranki andK.Saarinen, Phys.Rev.Lett.93, 255502 (2004).
[13] R. Vaidyanathan, M.Y. L. Jung, and E.G. Seebauer, Phys.

Rev. B 75, 195209 (2007).
[14] Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. B 30, 1844

(1984).
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