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We present highly accurate energy spectra and eigenfunctions of small 1D harmonically trapped two-

component Fermi gases with interspecies �-function interactions, and analyze the correlations of the

so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms but no

molecules) for positive and negative coupling constants. Changes of the two-body correlations as a

function of the interspecies coupling strength reflect the competition of the interspecies interaction and the

effective repulsion due to the Pauli exclusion principle, and are interpreted as a few-body analog of a

transition from a nonmagnetic to a magnetic phase. Moreover, we show that the eigenstate c adia of the

infinitely strongly interacting system with jn1 þ n2j> 2 and jn1 � n2j< n (n1 and n2 denote the number

of fermions of components 1 and 2, respectively), which is reached experimentally by adiabatically

changing the system parameters, does not, as previously proposed, coincide with the wave function c G

obtained by applying a generalized Fermi-Fermi mapping function to the eigenfunction of the non-

interacting single-component Fermi gas.

DOI: 10.1103/PhysRevLett.111.045302 PACS numbers: 67.85.�d, 05.30.Fk, 34.10.+x

1D systems serve as powerful models whose study
provides insights into fundamental phenomena such as
gas dynamics, electron transport, Cooper pairing, and
superconductivity [1–4]. In the special case where the
interactions between the particles are modeled by zero-
range � functions, the quantum mechanical problem
becomes integrable. The integrability has many important
consequences. For example, 1D systems with �-function
interactions can, if external forces are absent and periodic
boundary conditions are imposed, be solved via the Bethe
ansatz [5]. Another consequence of the integrability is the
fact that a single-component Bose gas with infinitely strong
�-function interactions behaves like an impenetrable Bose
gas, referred to as a Tonks-Girardeau gas [6–9]. The cor-
responding bosonic wave function has similarities with
that of a gas of noninteracting (NI) fermions; in fact, the
bosonic wave function can be mapped to the fermionic
wave function via a Bose-Fermi mapping [7,10–12]. This
Bose-Fermi duality has wide ranging applications. In stud-
ies of lattice Hamiltonian, e.g., it implies that bosonic
creation and annihilation operators can be mapped to fer-
mionic ones, and vice versa.

Given the success of the Bose-Fermi duality for single-
component Bose and Fermi gases, it is intriguing to ask
whether analogous dualities exist for trapped multicompo-
nent gases with interspecies �-function interactions with
coupling strength g. This question is not only of funda-
mental interest but directly relevant to ongoing cold atom
experiments on effectively 1D two-component Fermi gases
[13,14]. Indeed, a generalized Fermi-Fermi mapping
was recently formulated for harmonically trapped two-
component Fermi gases with infinitely large interspecies
�-function interactions. The generalized Fermi-Fermi

mapping [15] states that an eigenstate c G of the trapped
two-component Fermi gas with jgj ! 1 can be obtained,
for any n (n ¼ n1 þ n2), by applying a mapping function
MFF to the eigenfunction c ideal of the NI harmonically
trapped one-component Fermi gas, i.e., c G ¼ MFFc ideal.
This Letter shows that the states c G, constructed according
to the generalized Fermi-Fermi mapping, do not in general
agree with the eigenstates c adia of the two-component
Fermi gas, which emerge by adiabatically evolving the
system Hamiltonian from the NI to the infinitely strongly
interacting regime. For n > 2 and jn1 � n2j< n, the eige-
nenergies for states with a given parity for jgj ! 1 are
degenerate [16], thereby explaining how c G can be an
eigenstate but not coincide with any of the states that are
reached by performing an adiabatic sweep.
We also calculate the pair correlation functions of the

upper branch of the ðn1; n2Þ ¼ ð2; 1Þ, (3, 1), and (2, 2)
systems. The energy of the upper branch, which corre-
sponds to a metastable repulsive atomic gas, lies above
that of the NI system and is populated by starting from the
NI regime and turning on repulsive interspecies interac-
tions. The changes of the structural correlations as the
coupling constant is changed from small and positive, to
infinitely large, to small and negative reflect the competi-
tion between the interspecies interactions and the Pauli
pressure introduced by the antisymmetry requirement of
the wave function under the exchange of identical fermi-
ons. The expectation value of the intraspecies distance
coordinate exhibits a maximum at gc. For �1=g &
�1=gc, the interactions are ‘‘weaker’’ than the Pauli ex-
clusion principle and the expectation values of the intra-
and interspecies distances increase with increasing �1=g.
For �1=g * �1=gc, in contrast, the interactions become
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so strong that the system prefers to reduce the distance
between like particles with increasing �1=g. These struc-
tural changes are interpreted as constituting a smooth
few-body analog of the transition from a nonmagnetic
to a magnetic phase. The question whether 3D atomic
two-component Fermi gases undergo, if ‘‘driven up’’ the
upper branch, a transition from a paramagnetic to an
itinerant ferromagnetic phase, as described by the Stoner
model [17], has recently been studied extensively experi-
mentally and theoretically for 3D two-component Fermi
gases [18–25].

We consider n 1D fermions with mass m and position
coordinates zj. Assuming interspecies �-function interac-

tions with coupling strength g, the Hamiltonian reads

H ¼ Xn

j¼1

��@
2

2m

@2

@z2j
þ 1

2
m!2z2j

�
þ Xn1

j¼1

Xn

k¼n1þ1

g�ðzjkÞ; (1)

where ! denotes the angular trapping frequency and zjk ¼
zj � zk. Throughout, we assume n1 � n2. The solutions

for the ðn1; n2Þ ¼ ð1; 1Þ system are known semianalytically
for all g [26]. For n > 2, in contrast, the eigenenergies and
eigenstates are, in general, not known analytically and we
resort to a numerical approach. To solve the time-
independent Schrödinger equation for the Hamiltonian
H, we separate the center-of-mass motion and expand the
Green’s function for the relative coordinates in terms of
harmonic oscillator states. For the (2, 1) system, the
approach has been detailed in Ref. [27]. For the (3, 1)
and (2, 2) systems, we generalize the formalism of
Refs. [27–31]. Throughout, we assume that the center-of-
mass wave function is in the ground state and label the
relative eigenstates by the relative parity�rel (�rel ¼ �1).
Our calculations yield highly accurate energy spectra and
wave functions as a function of g. For g ¼ 0, the ground
state of the (2, 1) system has �rel ¼ �1, that of the (3, 1)
system has �rel ¼ �1, and that of the (2, 2) system has
�rel ¼ þ1; in the following, we restrict ourselves to these
subspaces.

Figure 1 shows the relative eigenenergies of the (2, 1),
(3, 1), and (2, 2) systems as a function of �Ehoaho=g,
where Eho and aho denote respectively the harmonic oscil-

lator energy and length, Eho ¼ @! and aho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!Þp

.
For g ! 0þ (far left of the graphs), the eigenenergies
approach the NI limit. As g increases, the eigenenergies
increase, reflecting the repulsive character of the
�-function interactions. In this work, we are primarily
interested in the upper branches shown by thick solid lines
in Fig. 1 [31]. For 1=jgj ¼ 0, the relative energy of
the upper branch is expected, assuming that some kind
of generalized fermionization takes place, to equal
ðn2 � 1ÞEho=2. Our numerical energies agree with this
expectation to better than 0.0001%, 0.005%, and 0.02%
for the (2, 1), (3, 1), and (2, 2) systems, respectively [32].
For negative g, the spectrum changes notably. In this

regime, the upper branch corresponds to a highly excited
state of the model Hamiltonian. In addition to states whose
energies change fairly gradually with �1=g, there exists a
set of ‘‘diving states,’’ reflecting the fact that the 1D
�-function potential with negative g supports a two-body
bound state. The fact that the two-body binding energy
goes to �1 for g ! �1 leads to the accumulation of
diving states in Fig. 1 for small positive �ahoEho=g. For
positive g, the upper branch was mapped out in Ref. [33].
For negative g, the upper branch has been mapped out for
the (2, 1) system [34] but not n > 3.
We now discuss the (2, 1) eigenstate of the upper branch

with 1=jgj ¼ 0. The energy of the upper branch of the
(2, 1) system with 1=jgj ¼ 0 is degenerate with the energy
of a state that is not affected by the �-function interactions
[see the lowest dashed line in Fig. 1(a)]. The two degen-

erate eigenstates c jgj¼1
adia;1 and c jgj¼1

adia;2 [corresponding to the

solid and lowest dashed lines in Fig. 1(a)] are, including the
center-of-mass contribution, given by [35]

c jgj¼1
adia;1 ¼ a�9=2

ho

2
ffiffiffi
3

p
�3=4

z12ðz13z23 � 3jz13jjz23jÞfðz1; z2; z3Þ
(2)
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FIG. 1 (color online). Relative energies for the (a) (2, 1)
system with �rel ¼ �1, the (b) (3, 1) system with �rel ¼ �1,
and the (c) (2, 2) system with �rel ¼ þ1 as a function of �1=g.
The dashed lines show the eigenenergies corresponding to states
that are not affected by the interspecies interactions. The thick
solid lines show the upper branch.
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with fðz1; . . . ; znÞ ¼ e
�Pn

j¼1
z2j =ð2a2hoÞ and c jgj¼1

adia;2 ¼
c ideal;0ðz1; z2; z3Þ, where

c ideal;0ðz1; z2; z3Þ ¼
ffiffiffi
2

p
a�9=2
hoffiffiffi

3
p

�3=4
z12z13z23fðz1; z2; z3Þ: (3)

Since the eigenstate c jgj¼1
adia;1 changes smoothly when the

system Hamiltonian is changed adiabatially (c jgj¼1
adia;2 is

unchanged), we refer to these states as ‘‘adiabatic eigen-
states.’’ According to the generalized Fermi-Fermi map-

ping [15], c jgj¼1
adia;1 should coincide with the state c G;0,

which is obtained by applying the spin-dependent mapping
function MFF (�j ¼" for j ¼ 1; . . . ; n1 and �j ¼# for

j ¼ n1 þ 1; . . . ; n) [15],

MFF ¼ Y

1�j<k�n

½ð��j"��k# � ��k#��j"ÞsgnðzjkÞ

þ ��j"��k" þ ��j#��k#�; (4)

to the energetically lowest lying eigenstate c ideal;0 of the

trapped NI single-component Fermi gas. We find, however,
that this is not the case. Instead, we find that c G;0

has nonunit overlap with c jgj¼1
adia;1 and c jgj¼1

adia;2 , i.e.,

jhc jgj¼1
adia;j jc G;0ij2 ¼ 8=9 and 1=9 for j ¼ 1 and 2,

respectively.
The (3, 1) and (2, 2) systems with 1=jgj ¼ 0 support

respectively two and four degenerate states with Erel ¼
15Eho=2. For the (3, 1) system, both states are affected by
the �-function interactions. For the (2, 2) system, three of
the four states are affected by the �-function interactions.

We find jhc jgj¼1
adia;1 jc G;0ij2 ¼ 4=5 and 0.865(7) for the (3, 1)

and (2, 2) systems, respectively [35]. This indicates that
c G;0 is, for n > 2 and n1 � n2 > 0, a linear combination of

the c jgj¼1
adia;j (j ¼ 1; 2; . . . ). Thus, starting in the energeti-

cally lowest lying eigenstate of the NI system, an adiabatic
sweep from g ¼ 0þ to g ! 1 does not only lead to
population of the ‘‘fermionized state’’ c G;0 but also to

population of one or more additional states that are
orthogonal to c G;0.

Figures 2(a) and 2(b) show contour plots of the wave

functions c jgj¼1
adia;1 and c G;0, respectively, for the (2, 1)

system with 1=jgj ¼ 0 as functions of the up-up distance

coordinate z12 and the Jacobi coordinate z12;3, z12;3 ¼
ðz13 þ z23Þ=

ffiffiffi
3

p
. The most striking feature is that c G;0

appears to have a higher ‘‘symmetry’’ than c jgj¼1
adia;1 . This

is highlighted in the eigenfunction cuts shown in Fig. 2(c).
The absolute value of the slope of the wave function c G;0

near the nodes at z12 ¼ � ffiffiffi
3

p
aho, corresponding to z13 ¼ 0

and z23 ¼ 0, is the same to the left and right of the node
[see the solid line in Fig. 2(c)]. Mapping c G;0 so that it

is antisymmetric with respect to z13 ¼ 0 and z23 ¼ 0
and describing the interspecies interactions through �0
functions in first-order perturbation theory, we find

E=Eho � 9=2þ cEhoaho=ðg
ffiffiffiffiffiffiffi
2�

p Þ with c ¼ 9. From our
numerical results, in contrast, we extract c ¼ 81=8. This
discrepancy highlights that the generalized Fermi-Fermi
mapping cannot, in general, be utilized within a perturba-
tive framework. Figure 2(c) shows that the wave function
c adia;0 is neither symmetric nor antisymmetric in the vicin-

ity of z13 ¼ 0 and z23 ¼ 0. This reflects the fact that the
interspecies degrees of freedom of the two-component
Fermi gas with n > 2 are not constrained by symmetry.
Next, we discuss the correlations of the upper branch of

the (2, 1), (3, 1), and (2, 2) systems. Figure 3 shows the
expectation values hjz12ji and hjz1nji as a function of�1=g.
The expectation value hjz1nji of the up-down distance
coordinate increases monotonically with increasing
�1=g for all three systems considered. The expectation
value hjz12ji of the up-up distance coordinate, in contrast,
first increases monotonically with increasing �1=g,
reaches a maximum at gc (gc < 0), and then decreases
monotonically. The ‘‘critical’’ coupling strengths are
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FIG. 2 (color online). Relative wave function of the (2, 1)
system with 1=jgj ¼ 0 and �rel ¼ �1. Contour plots of

(a) c jgj¼1
adia;1 and (b) c G;0 as functions of z12 and z12;3. Nodal

lines are shown by solid lines. The dashed and dotted contours
indicate positive and negative wave function regions; the con-
tours are spaced equidistantly. (c) Dotted and solid lines show

cuts of c jgj¼1
adia;1 and c G;0 as a function of z12 for z12;3 ¼ aho. The

thin dashed vertical lines at z12 ¼ � ffiffiffi
3

p
aho are shown as a guide

to the eye.
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�ahoEho=gc � 0:3, 0.35, and 0.6 for the (2, 1), (3, 1), and
(2, 2) systems, respectively.

The energy of the upper branch increases monotonically
with increasing �1=g, suggesting that the effective inter-
species interactions for the upper branch are repulsive for
all g (g positive and negative) and increase with increasing
�1=g. In a naive picture, this suggests that the system
expands with increasing �1=g. Indeed, this is the case
for �1=g & �1=gc, as indicated by the fact that hjz12ji
and hjz1nji increase monotonically in this regime with
increasing �1=g. However, hjz12ji turns around at gc,
indicating that the system favors smaller distances between
like particles. For �1=g * �1=gc, the interspecies inter-
actions are so strong that they are more important than the
effective repulsion due to the Pauli pressure. An analogous
energy competition drives, according to the Stoner model
[17], the transition from a paramagnetic phase to an itin-
erant ferromagnetic phase at a critical interaction strength.
The metastable upper branch has been populated experi-
mentally for small highly elongated two-component Fermi
gases [14]. These experiments suggest that decay to lower
lying molecular states is negligibly small even for negative
coupling constants g, thereby opening the possibility to
study the correlations discussed above experimentally.

In summary, we have solved the Schrödinger equation
for harmonically confined two-component Fermi gases in
one dimension as a function of the strength of the inter-
species �-function interaction. Highly accurate energy
spectra were obtained for the (2, 1), (3, 1), and (2, 2)
systems with positive and negative interspecies coupling

constants. The strict 1D spectra agree to about 1% or better
with those of quasi-1D atomic Fermi gases with aspect
ratio 10 or higher [27,36], which are currently being inves-
tigated by means of radio frequency and tunneling spec-
troscopy in Jochim’s cold atom laboratory in Heidelberg
[13,14]. We reported on two characteristics of the upper
branch. (i) Although the energy of the upper branch
coincides with that of a fully fermionized system for
infinitely large coupling constant g, the corresponding
eigenstate populated by adiabatically changing the system
Hamiltonian does not coincide with that obtained by apply-
ing the generalized Fermi-Fermi mapping proposed in
Ref. [15]. The underlying rationale is that the states of
the upper branch for n > 2 and n1 � n2 � 1 are more than
onefold degenerate and that the wave function between
unlike fermions is not constrained by symmetry consider-
ations [37]. (ii) We calculated the pair correlations of the
upper branch and found that the expectation value hjz12ji
associated with the intraspecies distance coordinate exhib-
its a maximum for negative g. This, combined with the fact
that the expectation value hjz1nji associated with the inter-
species distance coordinate increases monotonically with
increasing �1=g, indicates an intricate interplay between
the interspecies interactions and the Pauli exclusion prin-
ciple, similar to the energy competition of the Stoner
model that describes the transition from paramagnetic to
ferromagnetic behavior.
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