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In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate

tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic

Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to

intrinsic spectral broadening and brightness limitations. These effects are discussed, along with an opti-

mization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.
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Renewed interest in Compton scattering is currently
being focused on fundamental QED aspects of the inter-
action [1] and on advanced technology paths to generate
tunable electromagnetic radiation in the x-ray and gamma
ray spectral ranges [2].

While the basic physics underlying Compton scattering
is well known, a cursory overview of the recent literature
on the subject shows that there are still interesting ques-
tions related to the nonlinear [3] and radiation reaction [4]
regimes, as well as the role and nature of the dressed
electron mass during the interaction [5].

The presentwork focuses on theweakly nonlinear dephas-
ing effect [6] due to the ponderomotive force, and its influ-
ence on the maximum differential spectral and angular
brightness that can be attained via Compton scattering. In
this Letter, we (i) define a covariant criterion for nonlinear
dephasing onset, (ii) show the relation between ponderomo-
tive dephasing and total scattering probability, (iii) study the
balance between bandwidth and diffraction, and (iv) provide
a strategy for nonlinear optimization, including bandwidth,
diffraction, and nonlinear dephasing.

QED units are used throughout: length, mass, time, and
charge are measured in units of �- ¼ @=m0c, m0, �

-=c, and
e, respectively. In these units, the permittivity of vacuum is
"0 ¼ 1=4��. We consider a relativistic electron interact-
ing with a polychromatic plane wave described by the
4-potential, A� ¼ ��Að�Þ; � ¼ k�x

�, ���
� ¼ �1. In

the Lorentz gauge, @�A
� ¼ 0 ¼ k��

�A0ð�Þ, and the

Lorentz force equation can be solved exactly to obtain
the electron nonlinear 4-velocity [7]:

u� ¼ u0� � A� � k�
A�ðA� � 2u�0Þ

2k�u
�
0

¼ u0� � "�Að�Þ þ k�
A2ð�Þ
2k�u

�
0

; (1)

where "� ¼ �� � k���u
�
0=k�u

�
0 . The first term is the

initial ballistic electron velocity, the term linear in Að�Þ
contains the electric and magnetic coupling to the incident
wave, the quadratic term corresponds to the ponderomotive

force, which couples the transverse electron oscillation to
its axial dynamics via the transverse magnetic field.
In cases where the recoil parameter,� ¼ k�q

�, remains

small and spin can be ignored the brightness is adequately
described by the classical radiation formula [8]:

d2N

dqd�
¼ �q

4�2

����������
Z þ1

�1
u�e

iq�x
�
d�

��������
2

: (2)

Here, q� is the scattered radiation 4-wave number, �� is

its 4-polarization, and x�ð�Þ is the electron 4-trajectory,

parameterized by the proper time �.
For a plane wave of constant amplitude Að�Þ ¼ A0 cos�

the electron 4-velocity is integrated to yield the 4-position:

x�ð�Þ ¼ x0� þ
Z �

0

dx�
d�

d�

d’
d’

¼ x0� þ u0�
�

	
� "�

A0

	
sin�

þ k�
A2
0

8	2
ð2�þ sin2�Þ: (3)

	 ¼ k�u
�
0 ¼ d�=d� is the incident light-cone variable and

x0� is the initial 4-position. CombiningEqs. (2) and (3) in the

weak field limit (A0 � 1), we have
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dqd�
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��������
2

: (4)

Here, we have used ez ’ 1þ z, and neglected quadratic
terms in A0, except for the second harmonic in the radiation
phase. For conciseness, the initial 4-velocity now reads u�.

The single electron coherence factor [9] is one. For a square
pulse, the integration is performed to yield
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dqd�
’ �qA2
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; (5)
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� ¼ q�u
� is the scattered light-cone variable and�� is the

duration of the pulse.
The primary peak corresponds to a null argument, while

the first zero is obtained when the argument is equal to��,
as shown in Fig. 1; we can then quantify the onset of
significant ponderomotive dephasing as follows: starting
from the linear case, where A0 ! 0, we find the Doppler
shift condition, 	� � ¼ 0; for nonzero amplitude, the
primary peak is downshifted and the first zero is located
at ð��=	Þð	� �� ð�=4	ÞA2

0Þ ¼ �. We define the pon-

deromotive dephasing onset condition as ð�=4	2ÞA2
0�� ¼

� ¼ �A2
0��, where � is a geometrical factor. For head-

on collisions and on-axis radiation � ¼ 1=2, and the onset
condition for ponderomotive dephasing is simply
A2
0�� ¼ 2�.
The ponderomotive origin of this effect is well known,

and has been described by Brown and Kibble [10]; it is also
referred to as stemming from the electron dressed mass in
the laser field [5,10].

In the more general case of an arbitrary incident plane
wave, we have

d2N

dqd�
’ �q

4�2	2

����������
Z þ1

�1

�
"�Að�Þ þ iu�

q�"
�

	

�
Z �

0
Að’Þd’

�
ei½ð�=	Þ�þð�=2	2Þ

R
�

0
A2ð’Þd’�d�

��������:
(6)

The weakly nonlinear dephasing term, averaged over an
optical cycle, plays an important role because it can result in
a significant accumulated phase shift for sufficiently long
pulses. In fact, this term is directly related to the total
radiation probability, N ¼ R

�j��
�d4x, where � ¼

8��2=3 is the total scattering cross section, j� ¼ neu�=


is the electron 4-current density, and �� ¼ n�k�=k is the

incident photon 4-flux; ne and n� are the respective electron
and photon number densities. For a single electron, N¼
�
R
n�ðtÞð	=
kÞdt¼�

R
n�ð�Þd�=k. The incident photon

density is derived from the electromagnetic energy density

n� ¼ E2=4��k. Combining these results, we obtain N ¼
ð2=3Þ�R

A02d�. Comparing this expression with Eq. (6),
we see that, in the case of a slow-varying envelope, where
Að�Þ ¼ ð1=2ÞA0gð�Þ expð�i�Þ þ c:c: and jg0=gj � 1,
the total phase shift due to the ponderomotive force
is indeed proportional to the total scattering probabil-

ity: ð�=2	2ÞRþ1
�1 A2d� ’ ð�A2

0=4	
2ÞRþ1

�1 jgð�Þj2d� and

N ’ ð�=3ÞA2
0

Rþ1
�1 jgð�Þj2d�.

In order to better understand the spectral modifications
due to nonlinear dephasing, we continue with the slow-
varying envelope approximation, and recast the radiation
formula as

d2N

dqd�
’ �qA2

0

16�2	2

����������
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(7)

where ! ¼ �A2
0=4	

2.

Now, assuming that the Fourier transform of g is known,
and defining

wð�Þ ¼ ei!
R

�

0
g2ð’Þd’ ¼ 1ffiffiffiffiffiffiffi

2�
p

Z þ1

�1
~wð�Þe�i��d�;

~wð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z þ1

�1
wð�Þei��d�;

(8)

we have, by direct application of the convolution
theorem,Z þ1

�1
gð�Þe�i�ð1�ð�=	ÞÞei!

R
’

0
g2ð’Þd’d�

¼ ffiffiffiffiffiffiffi
2�

p Z þ1
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~wð�Þ~g

�
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� 1� �

�
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To proceed, we approximate wð�Þ with a simple linear
ramp model; then

~wð�Þ ¼
ffiffiffiffi
2

�

s �
1

!þ �
� 1

�

�
sin

�
ð!þ �Þ��

2

�

þ ffiffiffiffiffiffiffi
2�

p
cos

�
!
��

2

�
�ð�Þ: (10)

Within this very simple model, the role of the total
ponderomotive dephasing in terms of spectral modulation
is encapsulated in the cosð!��=2Þ interference term: the
continuous phase shift accumulated during the interaction
leads to the generation of multiple spectral lines. Put
another way, the continuous modulation of the electron
proper time generates new frequencies.
To validate this approximation, we use a Gaussian pulse

gð�Þ ¼ e��2=��2
, and check that the exact and approxi-

mate spectra are in reasonable agreement, confirming that
the key parameter is the nonlinear dephasing accumulated
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FIG. 1 (color online). Quadratic sinc spectra in the linear limit
and with nonlinear dephasing.
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over the entire interaction $ ¼ ðA2
0�=4	2Þ�Rþ1

�1 jgð�Þj2d�. This is the sought-after criterion for

resolving the weakly nonlinear dephasing onset: for long
pulses, the spectrum is narrow, and a small downshift is
sufficient to significantly alter the spectrum; conversely,
shorter pulses require more ponderomotive downshift to
resolve the effect. The Lorentz invariant quantity $ pro-
vides the scale for this mechanism. The main spectral peak

is downshifted by 1=ð1þ A2Þ, and the number of satellite
lines scales roughly as n ¼ $=2�. Finally, setting$ � 2�
for linear interactions translates into N & ð4�=3Þ� � 3%.

We now address the fully three-dimensional case.
Working within the context of the paraxial approximation
[11], for a linearly polarized, cylindrically symmetric
Gaussian transverse distribution at focus, the transverse

potential takes the form Ax ¼ ð1=2ÞA0gð�Þei���r2=ð1�i�zÞ=
ð1� i�zÞ þ c:c: Here, � ¼ k0ðtþ zÞ is the phase of the
wave, z0 ¼ ð1=2Þk0w2

0 is the Rayleigh length, expressed

in terms of the focal waist w0 and axial wave number k0,
�z ¼ z=z0, and �r ¼ r=w0. For an on-axis electron, the axial
position as a function of phase is easily derived; the ballistic
component is simply dz=d� ¼ uz=	 ’ e�
 sinh
=k0; 
 is

the rapidity. If our reference electron is synchronized, and in
the ultrarelativistic case, where e�
 sinh
 ’ 1=2, the po-
tential along the ballistic trajectory is Ax½ �r ¼ 0; zð�Þ; �� ’
1=2A0gð�Þe�i�=ð1� ið�=k20w

2
0ÞÞ þ c:c: The pulse energy

is evaluated by integrating the Poynting flux through the
focal plane over the pulse duration. Using x ¼ �=��, and
taking into account jg0=gj � 1,

W0 ’A2
0��k20w

2
0

16�

Z þ1

�1
g2ðxÞdx¼W0

Z þ1

�1
g2ðxÞdx: (11)
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FIG. 2 (color online). Top: linear spectra of a Gaussian-
Lorentzian pulse for different balances between bandwidth and
diffraction. Bottom: following the maximum angular and spec-

tral brightness as function of � ¼ ffiffiffiffiffiffiffiffi
��

p
=k0w0, for a fixed total

energy, in the linear regime.
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parison. Middle: following the maximum brightness as a func-
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line), and 3 values of �. The energy and brightness scales
correspond to the long pulse; they have to be multiplied by
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Since the maximum spectral density is radiated on-axis, we
specialize our analysis to that situation, and for head-on
collisions the radiation phase is q�x

� ’ qe�2
�=k0 ¼
��. We note that this interaction geometry can be imple-
mented experimentally; see, for example, [2] and references
therein.

The linear radiation integral reads

d2N

dqd�
¼ �2

�2
W0�

2�

��������
Z þ1

�1
gðxÞ

1� i�2x
e�ix��ð1��Þdx

��������
2

:

(12)

Here, we have introduced the normalized Doppler-shifted

frequency � ¼ qe�2
=k0, the scale parameter � ¼ffiffiffiffiffiffiffiffi
��

p
=k0w0, which measures the balance between band-

width and diffraction, and used the normalized incident
pulse energy. For illustration, consider the case of a
Gaussian temporal envelope

d2N

dqd�
¼ 4�2�2W0

�

�2
exp

�
2

�4
þ 2��

�2
ð�� 1Þ

�

��2

�
1

�2
þ��

2
ð�� 1Þ

�
: (13)

This is the convolution product of the Fourier transforms
of a Gaussian and a Lorentzian; � is the complementary
error function [12]. Rescaling the frequency as �� ¼
ð1=�2Þ þ ð��=2Þð�� 1Þ, for large values of ��, we

have S0 ’ 4�2W0�
�2e�2=�4

e4 ��=�
2
�2ð ��Þ. The form factor

f�� ¼ S0½��ð�Þ; �; ���=4�2W0 is a strong function of �

that also weakly depends on ��, as illustrated in Fig. 2;
it shows a clear maximum f1ð��Þ ’ 3:15379 at
�� ’ 1:71024, and ���ð��Þ ’ �0:389338.

Physically, this is significant as it shows that for a fixed
incident laser pulse energy the maximum number of
photons scattered per unit solid angle and frequency is
obtained when the transverse and axial scales are matched:ffiffiffiffiffiffiffiffi
��

p ¼ ��k0w0; bandwidth and diffraction are balanced.
This condition is independent of the normalized potential:
longer pulses diffracting slower will yield the same peak
spectral density as long as the matching condition is sat-
isfied. Finally, it is noteworthy that while the details of this

linear optimum depend on the exact pulse shape, the
approach is quite general.
For a self-consistent analysis, the effects of nonlinear

dephasing are now included. Proceeding exactly as before,
the radiation integral with nonlinear dephasing is derived
by considering the second harmonic axial position modu-
lation driven by the ponderomotive force: uzð�r ¼ 0; �Þ ’
sinh
 þ ðk0=2	ÞA2

0fð1=2Þgð�Þe�i�=½1 � i�zð�Þ� þ c:c:g.
The spectral density from Eq. (7) can be recast as follows:

d2N

dqd�
¼ �

16�2

A2
0��

2
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��������
Z þ1

�1
gðxÞ

1� i�2x

�e�ix��ð1��Þei�ðA
2
0
��=2Þ

R
x

0
ðg2ðyÞ=1þ�4y2Þdydx

��������
2

:

(14)

To study the interplay between bandwidth, diffraction,
and weakly nonlinear effects, consider a Gaussian temporal

envelope gðxÞ ¼ e�x2 . We start from a linear spectrumwith
fixed bandwidth���1, andmatched in terms of diffraction,
� ¼ ��. The ponderomotive dephasing � ¼ A2

0��=2 is

then varied to generate nonlinear spectra, as shown in
Fig. 3 (top). This is equivalent to varying the incident pulse
energy. For each spectrum, the maximum value of the main
spectral line is determined, and plotted as a function of
incident pulse energy on Fig. 3 (middle), for two different
incident pulse durations corresponding to CPA (ps) and
non-CPA (ns) laser technologies, respectively, and for three
values of �. The (linear) matched beam produces the high-
est brightness, which scales very nearly linearly with the
incident energy: higher energy allows one to use longer
pulses and softer foci, which yield the best performance for
our optimization metric. The most interesting conclusion is
that the brightness degrades as one enters the nonlinear
regime. Physically, this can be understood as follows: the
nonlinear dephasing simply redistributes the scattered en-
ergy into parasitic channels, without increasing the main
spectral line. Mathematically, Parseval’s theorem indicates
that, because the Fourier transform is multiplied by a phase
factor of modulus one, we have

��������
Z þ1

�1

Z þ1

�1
gðxÞ

1� i�2x
e�ix��ð1��Þei�ðA

2
0��=2Þ

R
x

0
ðg2ðyÞ=1þ�4y2Þdydxd�

��������
2¼

��������
Z þ1

�1

Z þ1

�1
gðxÞ

1� i�2x
e�ix��ð1��Þdxd�

��������
2

:

(15)

Finally, the maximum on-axis spectral and angular scattered photon number density, in units of photons per 0.1%
bandwidth per mrad2, for a balanced Gaussian-Lorentzian beam is determined as follows: we first define

Bx ¼ d2N

dqd�
�q�� ¼ �

4�2
e2
A2

0��
2�2hð�;��;�; A0Þ � 10�9;

h ¼
��������
Z þ1

�1
e�x2�ix��ð1��Þ

1� i�2x
ei�ðA

2
0
��=2Þ

R
x

0
ðe�2y2=1þ�4y2Þdydx
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2

:

(16)
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Here,�q ¼ q� 10�3 and�� ¼ 10�6. Next, for a fixed
value of ��, the brightness triple maximum is located
numerically, @A0

@�@�½A�2
0 ��2hð��;��;��; A�

0Þ� ¼ 0. The

corresponding brightness is B�
x ’ ð�=4�2ÞA�2

0 ��2e2
 �
10�9 � 0:241115, with ðA�2

0 ��=2ÞRþ1
�1ðe�2x2Þ=ð1þ � �4

x2Þdx ¼ 2:704� 2�. The incident pulse duration is

��=k0, the focal spot radius is w0 ¼
ffiffiffiffiffiffiffiffi
��

p
=k0�

�, and the

energy isW0 ¼
ffiffiffiffiffiffiffiffiffi
�=2

p
A�2
0 ��2=ð16�k0��2Þ. We see that all

parameters are governed by a single variable, which can be
chosen as W0 / ��, as shown in Fig. 3 (bottom).

In conclusion, we have studied the linear and nonlinear
optimization of the on-axis spectral angular brightness for a
single, synchronized, on-axis electron interacting with a laser
pulse, under the following conditions: Gaussian cylindrical
focal distribution, slow-varying temporal envelope, and linear
polarization. Themaximumbrightness is obtainedwhen pulse
duration and diffraction are balanced, and one operates near
the onset of the weakly nonlinear ponderomotive dephasing.
Within this context, larger incident laser pulse energy allows
for narrower bandwidth and softer foci, yielding a linear
increase in brightness. We also note that these effects can be
minimized if the ponderomotive force remains constant along
the electron trajectories; however, such an interaction geome-
try would require that the laser pulse duration and focal
radius be much larger than the temporal and spatial scales
characterizing the electron bunch, at a prohibitive energy cost.
Additionally, the spatial and temporal shaping required
becomes increasingly difficult at higher pulse energies.
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