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We report on two instabilities, called viscous fountain and viscous entrainment, triggered at the

interface between two liquids by the action of bulk flows driven by a laser beam. These streaming flows

are due to light scattering losses in turbid liquids, and can be directed either toward or forward the

interface. We experimentally and numerically investigate these interface instabilities and show that the

height and curvature of the interface deformation at the threshold and the jet radius after interface

destabilization mainly depend on the waist of the laser beam. Analogies and differences between these

two instabilities are characterized.
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When the bottom fluid is pumped through a tube above a
horizontal interface separating two immiscible fluids, the
upper fluid is withdrawn and a jet occurs above a threshold
flow rate. This phenomenon, called selective withdrawal
before the threshold and viscous entrainment after it, has
been intensively investigated in recent decades [1–3] and
finds applications in vulcanology [4], encapsulation [5]
or emulsification [6]. The opposite configuration, called
capillary fountain, where a bottom liquid is pushed through
a tube, into a top fluid (usually air), has also been inves-
tigated numerically and experimentally even though focus-
ing on inviscid flows [7,8]. While the flows at the origin of
these interface instabilities and jets were induced mechani-
cally, we show that it is possible to produce contactless
similar flows using focused light. It is well known that a
laser beam propagating through two-layer liquid systems
can induce interface deformations and hydrodynamic
flows of different natures. While nonhomogeneous
heating in absorbing liquids produces Marangoni and
thermoconvection flows [9–12], radiation pressure effects
occur at the interface separating fluids with different
refractive indices [13–15]. Besides, considering non-
absorbing turbid liquids, optical streaming flows can be
generated by transfer of linear momentum to the liquid in
the bulk due to the scattering of the incident beam [16].
The resulting viscous stress exerted by the streaming flow
can as well deform a soft liquid interface which adopts
various shapes depending on the beam power. When the
beam power is low, the viscous stress deforms the interface
into a steady wide hump first reported in Schroll et al. [17]
and its properties have been investigated numerically by
Chraibi et al. [18]. Above a beam power threshold, the
hump destabilizes producing an unsteady cylindrical jet.
While these jets were observed experimentally [17,19] in
the case where the viscous stress due to optical streaming
Ti and radiation pressure � act in the same direction

[as in Fig. 1(a1)], making it difficult to separate the exact
contribution of each effect, we demonstrate here, experi-
mental jetting instabilities exclusively due to optical
streaming [Fig. 1(a2), (a3)] where radiation pressure
and viscous stress are in opposition. These results are
supported by numerical predictions.
In this Letter, we demonstrate that two kinds of insta-

bilities called fountain and entrainment, respectively, can
be produced at the interface between two liquids by the
action of optical streaming flow depending on whether this
flow is directed toward or forward the interface. We
experimentally and numerically investigate the transition
between the steady hump configuration and the unsteady
jet in terms of optical power and characteristic lengths at
the threshold. Once the jet is formed, we characterize the
dependence of its radius to the beam power and to the
capillary length. An analogy with the viscous selective
withdrawal [1] is discussed.
The experimental apparatus consists in a continuous

Gaussian laser beam at wavelength 532 nm in vacuum, of
power P and beamwaistw0, propagating through two liquid
systems with different configurations. Configurations (1)
and (2) (Fig. 1) were performed in a Winsor III equilibrium
of n-dodecane and brine with a small amount of AOT sur-
factant [20]. Sodium chloride is used to screen electrostatic
repulsion between surfactant heads allowing for a significant
reduction of the interfacial tension (up to �� 10�6 N=m).
The transparent aqueous phase and the turbid spongelike
phase at equilibrium are set in contact to form a liquid-liquid
system separated by a soft interface. Configuration (3) was
performed in a near-critical two-phase microemulsion
(described in Ref. [21]) where we can control the turbidity
by varying the difference between the sample temperature T
and the critical temperature Tc of the system.
Figure 1 shows the three different configurations used

in this investigation. The interface can be either pushed
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[Figs. 1(a1), (b1), (c1)], pulled [Figs. 1(a2), (b2), (c2)] or
both pushed and pulled [Figs. 1(a3), (b3), (c3)] by the
viscous stress. At low beam powers [(Figs. 1(b1), (b2),
(c2)], steady wide humps are obtained, while increasing
the beam power induces a jetting instability [Figs. 1(a1),
(a2), (a3)]. Figures 1(c1), (c2), (c3) show the variation of the
steady hump height h as a function of the beam power P.
When increasing the beam power, we first observe a linear
regime (described in Ref. [18]) followed by a sudden
increase of the deformation amplitude. The last symbol
represented in each figure corresponds to the last stable
hump height before the instability threshold.

In order to characterize this instability and to perform
quantitative comparisons with numerical results, we solve
the hydrodynamic problem using a numerical algorithm
based on the boundary element method, detailed in
Ref. [18] and summarized hereafter.

The numerical procedure consists in solving the axisym-
metric two-phase Stokes equations, in addition to mass
conservation,

0¼�rpiþ�i�uiþFi; r�ui¼0 i¼1;2: (1)

The gravitational force is included in the corrected
pressure term pi defined as pi ¼ p0

i þ �igz, p
0
i being the

pressure in fluid i. ui is the fluid velocity and �i the
viscosity. We have introduced the cylindrical coordinate

system (r, �, z) with orthonormal basis (er, e�, ez). Fi ¼
$iðni=cÞIez ¼ Fie

�2ðr=!0Þ2ez is the body force density
resulting from light scattering and due to momentum con-
servation in each liquid (i ¼ 1, 2). $i is the forward
momentum attenuation coefficient ($i ¼ 0 for a transpar-
ent liquid) and ni the refractive index. c is the celerity

of light in vacuum and IðrÞ ¼ ð2P=�w2
0Þe�2ðr=w0Þ2 the

Gaussian light intensity of the weakly focused laser beam.
As our investigation is dedicated to optical streaming,

radiation pressure is not modeled in the numerical simula-
tion; therefore, we set � ¼ 0. Indeed, the effects of the
optical streaming are not well understood, and the role of
the present numerical simulations is to show its influence
on the interface without adding the complexity of second-
ary effects due to radiation pressure. The hydrodynamic
stress balance on the interface SI [described by its height
hðrÞ] involving interfacial tension and gravity effects is
written as

�1 � n��2 � n ¼ ½��� ð�1 � �2Þgh�n onSI: (2)

�i ¼ �piIþ �iðrui þrui
tÞ is the corrected hydro-

dynamic stress tensor and n is the unit vector normal to
the interface directed from fluid 1 (bottom) to fluid 2 (top).

�ðrÞ ¼ ð1=rÞðd=drÞf½rðdh=drÞ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdh=drÞ2p g is the
double mean curvature of the axisymmetric interface
in cylindrical coordinates. Marangoni effects due to the
laser heating were neglected as justified in a previous
investigation [22].
The motion of the interface follows a Lagrangian

approach dx=dt ¼ uðxÞ and we assume continuity of the
velocity at the interface with no slip at the boundaries.

We define the capillary length as lc ¼ ½�=ð�1 � �2Þg�1=2.
For the sake of simplicity, and in adequation with the
experiments, we consider in the numerical resolution �1 ¼
�2 and w0 < lc � L< R where L ¼ L1 ¼ L2 ¼ 100w0

and R ¼ 150w0 are respectively the thicknesses and the
radial extension of the liquid layers. We also define
the capillary number Ca ¼ Ca1 þ Ca2 such as Cai ¼
½ð�i@uz=@zÞ=ð�=LÞ� ¼ ð2niP$i=�c�Þ [18]. Ca2 ¼ 0,
Ca1 ¼ 0, and Ca1 ¼ Ca2 ¼ Ca=2 respectively correspond
to the cases where the interface is pushed, pulled or both
pushed and pulled (pp). Numerical results showing the
interface profile for Ca ¼ 1 and Ca ¼ 2 for the three
configurations are reported in figure 2. Below the instabil-
ity threshold [Fig. 2(b)], we notice that the interface adopts
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FIG. 1 (color online). Steady deformations [(b1),(b2),(b3)]
and unsteady jets [(a1),(a2),(a3)] due to optical streaming. The
sketches explain the different configurations, where the interface
is pushed [(a1), (b1)], pulled [(a2), (b2)] or both pushed and
pulled [(a3), (b3)] by the viscous stress induced by optical
streaming flows. Ti represents the viscous stress due to the
optical streaming, � the radiation pressure, and g the gravity.
Experiments [(a1), (b1)] were performed in a Winsor III equi-
librium of n-dodecane, brine and AOT surfactant. The top liquid
is a transparent aqueous phase in equilibrium with a turbid
spongelike phase for the bottom liquid. In experiments [(a2),
(b2)], the same Winsor III system has been used, the direction of
the laser simply being reversed [the pictures (a2), (b2) have been
rotated for easiest illustration]. Experiments [(a3), (b3)] were
performed in a two-phase microemulsion at T � Tc ¼ 1:6 K.
Beam powers P for [(b1), (a1), (b2), (a2), (b3), (a3)] are
respectively 462 mW, 501 mW, 990 mW, 2640 mW,
1030 mW, and 1600 mW, and beam waists w0 are 3 �m for
[(a1), (b1)], 1:4 �m for [(a2), (b2)], and 7:5 �m for [(a3), (b3)].
Experimental results of [(c1), (c2), (c3)] show the variation of
the steady deformation amplitude h versus P for each configu-
ration. The dashed linear curves are a guide for the eye.
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a steady hump shape showing small differences between
the three configurations. When the interface is destabilized
[Fig. 2(a)] an unsteady elongated shape emerges. The
radius of these nearly cylindrical shapes depends on the
chosen configuration. The variations of the deformation
amplitude hð0Þ versus Ca are shown for the three configu-
rations in the inset of Fig. 2(a). Beyond the linear regime
(up to Ca ¼ 0:5), hð0Þ depends on the configurations. This
asymmetry is also observed on the evolution of the tip
curvature in Fig. 3.

When the interface is pushed, the increase of the
dimensionless tip curvature �w0 with Ca is slower than
the increase of the dimensionless hump height h=w0

and saturates when approaching the threshold value
(�push � 1=w0). Conversely, when the interface is pulled,

or both pushed and pulled, �w0 increases much more
rapidly than h=w0 and a logarithmic behavior is observed
lnð�pullw0Þ � h=w0. This logarithmic behavior is very

similar to the results of viscous selective withdrawal
when lc is large compared to the tube diameter of the
pumping [1]. This is probably because in both cases the
interface is pulled by the viscous stress exerted by the flow
of the top liquid. In the viscous selective withdrawal, it is
sucked through a tube while in our case it is induced by a
beam centered bulk force.
A comparison between experimental and numerical

results near the instability threshold is provided in Fig. 4
for the push-pull configuration; data from push and pull
configurations (Fig. 1) are too scarce and too scattered near
threshold to be presented due to the high beam power
required for interface deformation in Winsor phases.
Numerical results for the push (fountain) and pull (entrain-
ment) configurations are also presented. For the push-pull
case, we first observe, a universal behavior for numerical
data for all beam waists investigated when plotting
1� ðh=htÞ as a function of 1� ðCa=CatÞ where ht and
Cat are respectively the amplitude of the deformation and
the capillary number at the instability threshold. The inset of
Fig. 4 shows a log-log representation of the previous results.
A power law fit was performed on the numerical results.
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FIG. 3 (color online). Numerical steady state variation of the
dimensionless tip curvature �w0 versus the dimensionless
deformation amplitude h=w0 before the instability threshold.
lc=w0 ¼ 10.
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ðCa=CatÞ ¼ 1� ðP=PtÞ for experimental (symbols) and numeri-
cal results (lines) before the instability threshold. The experiments
correspond to the configuration pp (microemulsion system with
T � Tc ¼ 1:6 K) for 4 different beam waists w0 (1:41 �m,
3 �m, 5 �m, and 8 �m). The numerical results correspond
to the three configurations. A log-log representation is shown in
the inset. A power law fit on the numerical results shows a
0:7� 0:05 exponent.

-60 -40 -20 0 20 40 60
r/w

0

0
4

8

z/
w

0

-60 -40 -20 0 20 40 60
r/w

0

0

10

20

30
z/

w
0

PUSH
PP
PULL

0 0.5 1 1.5
Ca

0

5

10

15

h/
w

0

PUSH
PP
PULL

Unsteady Jets

Steady deformations

T
iΠ=0

(b)

(a)

Ca=1

Ca=2

fountain

entrainment

withdrawal

FIG. 2 (color online). Numerically calculated unsteady jets (a)
and steady deformations (b) for the 3 different configurations.
Radiation pressure is not considered in the calculations (� ¼ 0).
Capillary number Ca ¼ 2niP$=ð�c�Þ is Ca ¼ 1 for (b) and
Ca ¼ 2 for (a). The dimensionless capillary length is lc=w0 ¼
10. The inset shows the dimensionless steady deformation
amplitude h=w0 versus Ca.
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The best fit exponents are 0.65, 0.75, 0.7, respectively,
for the push, pull, and pp configurations with an uncertainty
of 0.05.

In order to understand the transition of the interface
shape near the threshold, we investigated the dependence
of its characteristic lengths (threshold height ht and
curvature �t) and force balance (represented by Cat) as a
function of lc=w0 which compares hydrodynamic and
optical characteristic length scales.

Figure 5(a) shows the variation of the dimensionless
threshold hump height ht=w0 versus lc=w0. A qualitative
agreement between the experimental and the numerical
results is observed. The inset of this figure, indicates that
the dimensionless curvature �tw0 is almost independent of
lc=w0; therefore, �t � 1=w0 when the interface is pushed
and �t � 10=w0 when the interface is pulled, showing the
highest tip curvature in the pull configuration. Figure 5(b)
represents the variation of Cat as a function of lc=w0. We
also notice a very small dependence of Cat versus lc=w0

showing that Cat � 1 for the numerical results. This means
that the interface is destabilized when the vertical viscous
stress �ð@uz=@zÞ � �uz;max=L becomes larger than �=L,
i.e., when uz;max >�=�. Indeed, below the threshold, the

vertical viscous stress is small enough to ensure that
uzðr ¼ 0Þ ¼ 0 on the interface, while at the threshold,
the vertical stress becomes so important that no steady
solution is achievable (i.e., uzðr ¼ 0Þ � 0 on the inter-
face), leading to the instability. Nonetheless, a discrepancy
is noticed when comparing the experimental results to the
numerical simulations. It is attributed to radiation pressure
which is experimentally present and acts in the present case
in opposition to the viscous stress. Radiation pressure was

not modeled because of nontrivial wave guiding effects
[15] and in order to focus on optical streaming.
The characteristics of the jet are presented in Fig. 6.

It reports the variation of the dimensionless jet radius
Rj=w0 as a function of lc=w0. We can first notice that the

radius of the jet has a very different value depending on
whether the interface is pushed (Rj;push � 10w0) or pulled

(Rj;pull � 0:1w0). This demonstrates that the shape of the

jet strongly depends on the mechanism that led to its
formation. Therefore, as the fluid is injected by the light
beam towards the interface, a viscous fountain has a larger
radius than an entrained jet where the fluid is sucked by the
beam. Figure 6 also points out a small increase of Rj with

lc, a qualitative agreement between numerical results and
experiments can be seen as well. Finally, the influence of
the capillary number on the jet radius is reported in the
inset of Fig. 6, showing a small increase of Rj with Ca.

To conclude, we evidenced two new interface instabil-
ities, optical viscous fountain and entrainment, both based
on the transfer of linear momentum from a light beam to
turbid viscous liquids due to light scattering. We showed
that depending on the amplitude of the viscous stress
generated by the optical streaming, the interface can adopt
either a steady bell shape or the form of an unsteady jet.
Different configurations were investigated, as the interface
can be pushed, pulled or both pushed and pulled by the
viscous stress. When the interface is pulled, our results
emphasized a logarithmic coupling between the deforma-
tion amplitude and the tip curvature which is very similar
to viscous withdrawal behaviors [1]. In addition, we
demonstrated that when the characteristic lengths of the
problem are well separated (i.e., a container of very large
size comparing to the capillary length and to the beam
waist) the tip curvature at the threshold is inversely
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proportional to the beam waist while the jet radius is nearly
proportional to it. Finally, we showed that the tip curvature
at the threshold is the smallest and the jet radius the largest
when the interface is pushed compared to the other con-
figurations. Therefore, the mechanisms of withdrawing the
fluid (producing viscous entrainment) or pushing it towards
the interface (to form a viscous fountain) produce an
interesting asymmetry which reveals important features
that could find many concrete applications such as the
contactless actuation of microfluidic flows [23].
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