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Intense laser pulses excite a nonlinear polarization response that may create an effective flowing

medium and, under appropriate conditions, a blocking horizon for light. Here, we analyze in detail the

interaction of light with such laser-induced flowing media, fully accounting for the medium dispersion

properties. An analytical model based on a first Born approximation is found to be in excellent agreement

with numerical simulations based on Maxwell’s equations and shows that when a blocking horizon is

formed, the stimulated medium scatters light with a blackbody emission spectrum. Based on these results,

diamond is proposed as a promising candidate medium for future studies of Hawking emission from

artificial, dispersive horizons.
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Recent developments in the understanding of light
propagation have led to evidence that by using intense
laser pulses propagating in a nonlinear medium, it is pos-
sible to create an effective medium that flows with the
same speed as the laser pulse, i.e., at speeds close to or,
as a consequence of dispersion, even higher than the speed
of light at other frequencies in the medium [1–9]. Indeed,
in a medium with a third order (also called ‘‘Kerr’’) non-
linear polarization response, the refractive index of the
medium is given by n ¼ n0 þ n2Iðz� vtÞ, where n0 is
the background index, n2 is the nonlinear Kerr index, and
Iðz� vtÞ is the laser-pulse intensity profile, traveling along
the z direction with velocity v. In a typical condensed
medium, e.g., glass, the maximum amplitude of the laser-
pulse-induced refractive index perturbation is �nmax ¼
n2Imax � 0:01–0:001. This is sufficient to scatter light,
e.g., either light from the laser pulse itself (the self-
scattering process) or from a second weak probe pulse
(the induced scattering process).

Under appropriate conditions, one may also potentially
observe induced scattering (and excitation) of photons
that originate from the vacuum state. One motivation for
studying such an effect lies in the prediction that the �n
may be described in terms of a horizon that mimics the
event horizon of a gravitational black hole [1–7]. Indeed,
in the absence of material dispersion, it is possible to
write the effective spacetime metric for the moving �n
as ds2 ¼ c2dt2 þ ðdr� VdtÞ2. This is equivalent to the
Painlevé-Gullstrand metric showing that in the reference
frame of the �n, the medium is effectively flowing with
speed V, which is a Galilean velocity (�1< V <þ1)
and is determined by n and v. A horizon is formed when
V ¼ c [5,10]. Interaction with the vacuum state leads to
the emission of photon pairs that are analogous to
Hawking emission from a black hole. Recent measure-
ments claimed the observation of a spontaneous emission

from a laser-pulse-induced moving �n that appeared to
have some of the features predicted for the analog
Hawking emission [11,12]. However, these measurements
are not considered as conclusive and further evidence is
required [13–15].
In this Letter, we investigate in detail the interaction

between a �nmoving at a generic speed v and a probe light
pulse. Our analytical and numerical models fully account,
without any approximations for material dispersion, for the
full shape of the �n and allow a comprehensive analysis of
the interaction dynamics for varying �n speed. The input
probe pulse is scattered into two output modes, one with
positive and the other with negative comoving frequencies
[16]. A remarkable feature of this stimulated emission is
that the negative mode emissivity is dictated by a black-
body law with a temperature that is directly related to the
steepness of the moving �n. This prediction is also fully
confirmed analytically within a Born approximation model
that provides physical insight into the scattering mecha-
nism. The blackbody emission is predicted to occur for �n
speeds such that the light pulse is slowed to the point that
it cannot traverse the �n—the �n has a blocking horizon.
It is in this regime that we propose a setting for future
experiments in diamond that exhibits the required condi-
tions to observe analog Hawking emission.
Scattering from a moving�n.—A soliton propagating in

a dispersive medium will shed light through a mechanism
known as resonant (or dispersive wave) radiation (RR)
[17–20]. This emission may be described as a self-induced
scattering process whereby light from the soliton is scat-
tered into a frequency-shifted mode by the self-induced
Kerr �n. It was recently shown that a second scattered
mode also exists: this mode has negative frequency in the
reference frame comoving with the soliton and has been
called ‘‘negative-frequency resonant radiation’’ (NRR)
[16]. Both of these modes are found within the framework
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of a model that neglects all nonlinear effects and simply
considers the soliton �n and models how light is scattered
within the first Born approximation [21]. The model there-
fore generalizes RR and NRR generation beyond soliton
physics to also include systems that do not support solitons
(e.g., a three-dimensional pulse with transverse spatial
dynamics or an intense pulse in the normal group velocity
dispersion regime). The scattered amplitudes of the two
modes are given by [21]

Sð!RRÞ ¼ i
v!2

RRn0
2c2kzð!RRÞ

ei½ð!RR�!INÞz=v�R̂ð!RR �!INÞ; (1)

Sð!NRRÞ ¼ i
v!2

NRRn0
2c2kzð!NRRÞ

ei½ð!NRRþ!INÞz=v�R̂ð!NRR þ!INÞ;

(2)

where R̂ is the �n Fourier transform and!RR;NRR;IN are the

RR, NRR, and input probe pulse frequencies.
In the following, we present a series of numerical simu-

lations and a comparison with predictions based on the
Born approximation equations (1) and (2) with which we
estimate the amplitudes of the RR and NRR waves gen-
erated by an input probe pulse interacting with a moving
�n, for varying frequency of the input pulse. The system
considered is depicted in Fig. 1—a probe light pulse
interacts with the trailing edge of a moving �n. The �n
may thus be modeled using any function that describes a
rising refractive index front (two examples are shown in
the figure). Backward propagating modes are neglected on
the basis that their overlap times with the input pulse and
�n are extremely short and they will therefore carry neg-
ligible energy. The numerical simulations were carried out
using both a finite difference time domain (FDTD) [22]
and the unidirectionnal pulse propagation equation (UPPE)
[21,23] algorithms all under the same input conditions.
Both methods directly solve Maxwell’s equations; how-
ever, the FDTD algorithm supports backward propagating
modes while the UPPE does not. There were no discernible
differences between the outputs of these two codes, hence
lending further support to neglecting the backward modes.
In Fig. 2, we show examples obtained with the FDTD code

with �n ¼ �nmax expf�½ðz� vtÞ2=�2�mg, where �nmax ¼
0:01; � andm are chosen so that the �n front has a 7 fs rise
time and also such that this rise time is much shorter than
the overall width of the �n, thus ensuring that light only
interacts with the trailing edge. The dispersion is chosen
so as to resemble that of diamond and is shown in the figure
in ð!0; !Þ frequency coordinates, where primed quantities
indicate that they refer to the comoving reference frame
!0 ¼ ð!� vkÞ, where k is the light pulse wave vector.
Figure 2(a) shows the temporal envelope profile of an

input 5 �m wavelength probe beam interacting with the
�n in the comoving frame for the generic case in which the
�n speed v ¼ 1:9� 108 m=s is too slow to actually com-
pletely block the impinging light for �nmax ¼ 0:01. We
refer to this as the ‘‘nonblocking’’ case: the input light will
be transmitted through the �n into a mode indicated with F
and will only be partly scattered into the RR and NRR
modes that are reflected backward in the comoving frame
(but are traveling forward in the laboratory frame). This
partial conversion is also clear in the frequency spectrum
evolution in Fig. 2(b) that shows generated peaks that are in
excellent agreement with the frequencies predicted from
momentum conservation, i.e., comoving frequency !0

FIG. 1 (color online). Schematic drawing of interaction ge-
ometry: the input light pulse propagates with speed vg, catches

up and interacts with the trailing edge (thick solid curve) of the
moving �n, propagating with speed v & vg.

FIG. 2 (color online). Example of a numerically simulated
interaction of a probe pulse with a moving �n. (a),(b) and (c)
show the temporal envelope profile evolution, spectral evolution
and relevant dispersion curves, respectively, for the case in
which the �n moves too slowly to form a blocking horizon.
(d),(e) and (f) show similar figures for a faster �n such that a
blocking horizon is formed. The �n rising front is shown as a
grey shaded area in (a) and (d). All intensity plots are shown over
4 decades in logarithmic scale.

PRL 111, 043902 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JULY 2013

043902-2



conservation shown as the horizontal dashed lines inter-
secting the dispersion relation in Fig. 2(c). Generalized
Manley-Rowe (photon number balance) relations may be
derived for an effective moving medium that, accounting
for the modes present in this case, reads as jFj2 þ jRRj2 �
jNRRj2 ¼ 1, where j � j indicates the mode photon number
normalized with respect to the input mode [24,25].

Figures 2(c)–2(e) show similar results, but now v ¼
2:07� 108 m=s has been increased such that the input
light pulse is slowed down upon interacting with the �n
rising front to the point that its group velocity becomes
equal to v; i.e., the �n presents a ‘‘blocking horizon’’ for
light. In this case, the input mode is completely converted
to the RR and NRR modes, and jRRj2 � jNRRj2 ¼ 1.

We now examine the ratio r ¼ jNRRj2=jRRj2 for
varying input frequency. In Fig. 3(a), we show a typical
example for the blocking case in logarithmic scale (the
red points are results from numerical simulations, and
the solid line is a linear fit). Similar results are found for
all values of v, i.e., also in the nonblocking case. The
surprising feature here is that r has a clear exponential
dependence over more than eight decades. If we then
combine this exponential dependence r ¼ expð��!0Þ
with the generalized Manley-Rowe relations, we find that

jNRRj2¼ð1�jFj2Þ=½expð�!0Þ�1�. In the blocking case
(jFj2 ¼ 0), this implies that the NRR mode emission
follows a blackbody law with temperature given by
T ¼ @=ðkB�Þ. The NRR photon number will thus diverge
close to !0 ¼ 0, as shown in Fig. 3(a) (solid line indicated
with ‘‘NRR’’). The moving �n is therefore effectively
transforming the input light, regardless of its state, into
an output NRR mode that has a comoving blackbody
spectrum. We can also evaluate r directly from the first
Born approximation relations [Eqs. (1) and (2)], and the
same exponential dependence for r is found [shown as a
dashed line in Fig. 3(a)]. For a wide range of steplike
functions, the Born approximation can even be solved
exactly and thus proves the robustness of this result (see
the Supplemental Material [26]).
In Fig. 3(b), we show the @=kB� obtained from similar

curves as shown in Fig. 3(a) for varying �n speeds: the
solid line is the result from numerical simulations, the
dashed line shows the Born approximation result, and
the two curves are in overall good agreement. However,
we note that in crossing over into the nonblocking case, the
appearance of the additional transmitted mode (jFj2 > 0)
significantly distorts the blackbody spectrum. Indeed, if we
plot the NRR photon number for a nonblocking case
[dotted line in Fig. 3(a)], we see that at small frequencies
the mode number drops to zero rather than diverging, as
would be expected for a 1D blackbody emission. This is in
keeping with quantum calculations in a generic ‘‘flowing
fluid’’ setting [27] and can be understood by noting that for
high enough frequencies, a blocking horizon is still present
[region between the dispersion curve maxima indicated
with stars in Fig. 2(c)] but low frequencies are not blocked
at all, implying that the interaction time with the �n
trailing edge is significantly reduced and any scattering
process is suppressed. This suppression is also observed in
Fig. 3(c), which shows the total photon number jNRRj2 þ
jRRj2 evaluated from the numerical simulations. As can be
seen, this number varies by several orders of magnitude
with varying v and is dramatically enhanced only in the
presence of a blocking horizon.
We note that a blocking horizon may be likened to a

white hole horizon, which in turn has been predicted to
lead to Hawking emission [1,4,5,7,28], i.e., emission of a
blackbody spectrum. In the presence of a blocking horizon,
we may therefore evaluate the Hawking temperature
according to T ¼ ð1=2�Þ�2vjdn=dtj (evaluated at the
horizon) [5]. In Fig. 3(d), we compare the (comoving)
Hawking temperature (solid curve) and the numerically
estimated temperatures (red dots) for �n with a fixed v
and varying �nmax. As can be seen, the agreement is
excellent over a wide range of values, including for
�nmax values that are experimentally accessible through
the nonlinear Kerr effect.
We note that in the blocking case, the Manley-Rowe

relations imply that jRRj2 þ jNRRj2 > 1; i.e., the photon

FIG. 3 (color online). (a) Numerical simulation for v ¼ 1:9�
108 m/s of r ¼ jNRRj2=jRRj2 for varying input frequency (dots)
and best fit with exponential function (solid line). Dashed line—
Born approximation calculation. Also shown is the normalized
photon number jNRRj2 for the blocking (solid blue line) and
nonblocking (dotted line) cases. (b) @=kB� [derived from graphs
as in (a)] for varying �n speed—simulations (solid line) and
Born approximation model (dashed line). The shaded area
indicates speeds for which a blocking horizon is formed.
(c) Total normalized photon count for varying speed.
(d) Comparison between numerically estimated emission tem-
perature T ¼ @=kB� (dots) and theoretical Hawking emission
temperature estimated from the �n gradient (solid line) for
varying maximum index change �nmax (blocking case).
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numbers are amplified (at the expense of the moving �n)
[21]. Therefore, if the input probe pulse were to be reduced
to the level of the quantum noise fluctuations, then the
results shown above predict the spontaneous emission of
a blackbody spectrum. In other words, the noise of the
amplifier is characterized by a temperature that remains
constant across all frequencies. This is therefore a some-
what different kind of amplifier with respect to better
known examples in optics, e.g., optical parametric ampli-
fiers that have a noise temperature that scales linearly with
frequency T ¼ @!=kB [29]. Moreover, the link with gravi-
tational horizons implies that the amplifier noise measured
in an actual experiment may be likened to spontaneous
Hawking radiation. The blackbody dependence implies
that the amplifier gain scales as 1=!0 for !0 ! 0. In the
comoving frame, light is coupled between modes that have
a constant or nearly constant !0 � 0. Looking at Fig. 2(f),
we see that if the input mode has a laboratory frequency !
close to zero, then the output mode will appear at high
frequencies, typically in the UV region, in the laboratory
frame. The amplifier therefore converts radiation from the
low to the high (lab frame) frequency modes and the 1=!0
blackbody divergence; i.e., Hawking emission will appear
as a divergence (or peak) centered at the UV lab frame
frequency.

The high amplification gain when coupling between
!0 � 0 modes also indicates possible methods for effi-
ciently observing these scattering effects and possible
applications. For example, in Fig. 4, we show numerical
simulations of a weak 15 THz probe (20 �m wavelength)
pulse interacting with a Ti:sapphire laser pulse with
800 nm wavelength, 60 fs duration, and input intensity
80 TW=cm2, propagating in a 500 �m thick diamond
sample. These simulations were performed using two
UPPE equations, one for the pump and one for the THz
pulse that are coupled only through a nonlinear cross-phase-
modulation term in the THz pulse equation / 2n2I (details
of the code can be found, e.g., in Ref. [21]). The self-phase-
modulation term / n2I is included in the 800 nm pump
equation, but four wave mixing and third harmonic genera-
tion have been purposely neglected. There is no blocking
horizon for the probe pulse, but nevertheless the spectrum
clearly shows relatively efficient scattering to the UV that
occurs predominantly when a shock front, i.e., the steepest
gradient, forms on the pump pulse [indicated by an arrow in
Fig. 4(a)] in agreement with Eqs. (1) and (2). Most inter-
estingly, the output mode is peaked around the !0 � 0,
corresponding to a lab frequency of 7 rad=fs (270 nm
wavelength). In other words, laboratory reference frame
frequencies in the THz or multi-THz region are already
sufficiently low to excite the 1=!0 gain of the amplifier.
This in turn provides indications of the spectral range of
the noise fluctuations that may be spontaneously excited
by the �n and lead to a spontaneous (i.e., seeded by thermal
or vacuum noise) emission peak in the UV. At room

temperature, the background blackbody photon mode den-
sity at 15 THz is�105 and thus significantly larger than the
quantum vacuum noise mode density equal to 1=2 a photon
per mode: spontaneous emission will be seeded by the
thermal background. However, it is sufficient to cool the
diamond sample to �30 K to invert the situation such that
thermal fluctuations are dominated by more than 1 order of
magnitude by quantum vacuum noise.
Conclusions.—A numerical and analytical evaluation

based on the Born scattering approximation predicts that
light is dramatically transformed by a moving medium.
The Born approximation model used here could also be
extended to provide exact analytical relations and study
scattering phenomena in other systems in which linear
waves interact with a moving, dispersive medium, e.g.,
gravity waves in water or acoustic oscillations in
Bose-Einstein condensates. Optical horizons have been
proposed for the measurement of Hawking emission but
also for all-optical transitors [30]. Other applications of an
effective moving medium to be considered in future work
could be relatively efficient THz detection by frequency
conversion in diamond (even without a horizon, as shown
in Fig. 4) or generation of squeezed vacuum states in the
UV region.
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FIG. 4 (color online). Numerical simulation of the nonlinear
propagation of an 800 nm pump pulse and a copropagating
15 THz probe pulse (shown in logarithmic scale over four
decades). Temporal profile evolution of (a) the 800 nm pump
pulse and of (b) the THz pulse. The arrow indicates the propa-
gation distance at which a shock front forms on the pump pulse.
‘‘RR’’ indicates emission from the THz pulse scattered from the
pump shock front. (c) Pump pulse spectral evolution. The THz
pulse spectrum (six decades in logarithmic scale) in (d) shows a
clear peak centered around the !0 ¼ 0 point, corresponding to a
7 rad=fs lab frame frequency.
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