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Ultracold fermionic atoms placed in a synthetic magnetic field arrange themselves in Landau levels.

We theoretically study the optomechanical interaction between the light field and collective excitations of

such fermionic atoms in synthetic magnetic field by placing them inside a Fabry-Perot cavity. We derive

the effective Hamiltonian for particle hole excitations from a filled Landau level using a bosonization

technique and obtain an expression for the cavity transmission spectrum. Using this we show that the

cavity transmission spectrum demonstrates cold atom analog of Shubnikov–de Haas oscillation in

electronic condensed matter systems. We discuss the experimental consequences for this oscillation for

such a system and the related optical bistability.
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By allowing an ultracold atomic ensemble to interact
with a selected mode of a high-finesse cavity it is possible
to probe the quantum many-body state of such an ultracold
atomic system. The resulting cavity optomechanics or
cavity quantum electrodynamics with ultracold atoms has
recently witnessed a significant development [1]. The
experimental successes include the coupling of collective
density excitation of an ultracold bosonic condensate with
a single-cavity mode and observation of the coupled
dynamics through cavity transmission [2], a strongly
coupled cavity mode with a highly localized ultracold
atomic condensate trapped inside a single antinode of a
cavity field [3], demonstration of strong ultracold atom-
cavity-coupling-induced optical nonlinearity even at low
photon density [4], and selected atom-photon coupling of a
single atomic ensemble in a multiensemble system [5] to
name a few.

In another development, there has been significant
experimental and theoretical progress in studying the
effect of optically induced artificial or synthetic gauge field
[6] on such neutral atoms, making it a playground for
quantum simulation of phenomena that occur when an
electronic condensed matter system is placed in a real
magnetic field. The experimental achievements in this
direction include the observation of vortices, Abrikosov
vortex lattice in trapped ultracold atomic superfluid ini-
tially by achieving the synthetic magnetic field through the
rotation of the trap [7], and later by Raman laser induced
spatially varying coupling of the hyperfine states of such
ultracold atoms [8]. A more recent development in this
direction includes the creation of optical flux lattices [9],
realization of spin-orbit coupling for such neutral ultracold
bosonic [10] and fermionic atoms [11] with the possibility
of creating ultracold atomic analogs of topological con-
densed matter phases [12].

This Letter aims to combine these two developments by
considering a system of such ultracold atoms trapped
inside a high-finesse Fabry-Perot cavity interacting with

a single-cavity mode (see Fig. 1), additionally, in the
presence of a synthetic magnetic field. Specifically, we
consider the case of ultracold fermionic atoms [13] in a
synthetic magnetic field [14,15] such that a set of Landau
levels (LLs) can be filled according to the Pauli principle.
We consider the coupling between the bosonic particle-
hole-like excitations from such filled Landau levels of
fermionic atoms with the cavity mode. We find that the
atom-photon coupling explicitly shows Landau level
degeneracy and has finite discontinuities at certain values
of artificial magnetic field strength that resembles the well-
known Shubnikov–de Haas oscillation [16] in a condensed
matter system. The cavity transmission spectrum shows
optical bistability, a hallmark of optical nonlinearity in
such a cavity system [17], but now the features of the
bistable curve also reveal the Landau level structure. Our
results suggest that cavity optomechanics with such atomic
Landau levels can be a powerful probe for ultracold atoms
in synthetic gauge field.

FIG. 1 (color online). Schematic diagram of the system con-
sidered. The concentric cylindrical surfaces represent the Fermi
surfaces that correspond to Landau levels (LLs) of fermionic
atoms inside the cavity with LL quantum number n. The particle
hole excitation from the last filled Landau level is also shown.
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We consider a two-dimensional system of N ultracold
neutral fermionic two-level atoms each of mass M sub-
jected to a synthetic magnetic field [8,14,15,18], placed
inside a Fabry-Perot cavity of area A which is driven at
the rate of � by a pump laser of frequency !p and wave

vector K ¼ ðKx; KyÞ. The atoms have transition frequency

!a, and interact strongly with a single standing wave
empty cavity mode of frequency !c. We take the artificial
magnetic field as 2�ẑ. We also ignore the effective trap
potential assuming it is shallow enough in the bulk. The
resulting single particle Hamiltonian is analogous to the
Landau problem of a charged particle in a transverse
magnetic field (for details, see Ref. [19]) that can be
written as

HL ¼ 1

2M
�2; (1)

where � ¼ p�MA is the kinetic momentum, with the
effective vector potential A ¼ �� r in symmetric gauge.
The eigenstates of this Hamiltonian are Landau levels
with effective cyclotron frequency !0 ¼ 2� and eigene-
nergies En;m ¼ 2@�ðnþ 1=2Þ. The effective magnetic

length in this problem is l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=2M�
p

.
If the pump laser frequency !p is far detuned from the

atomic transition frequency!a, the excited electronic state
of the two level atoms can be adiabatically eliminated. It is
assumed that such atoms interact dispersively with the
cavity field, taken to be single mode. In the dipole and
rotating wave approximation, we get the effective system
Hamiltonian (details in Ref. [19])

Ĥeff ¼ ĤL þ ĤI þ ĤC; (2)

with

ĤL ¼
Z

d2r�̂yðrÞ½�̂2=2M��̂ðrÞ; (3)

ĤI ¼
Z

d2r�̂yðrÞ½@U0cos
2ðK � rÞâyâ��̂ðrÞ; (4)

ĤC ¼ @�câ
yâ� {@�ðâ� âyÞ: (5)

Here, U0 ¼ g20=�a is the effective light-matter coupling

constant with g0 a single photon Rabi frequency, �a ¼
!p �!a. Here, ĤL is the atomic Hamiltonian in the

synthetic magnetic field, ĤC captures the dynamics of

the cavity photons with �c ¼ !c �!p. ĤI is the term

that describes interaction between atom and the cavity
mode. The atomic field operator in the Landau level basis
(symmetric gauge) is given as

�̂ðrÞ ¼ X

m;n

ĉn;mhrjn;mi ¼ X

m;n

e�jzj2=4l2
0

ffiffiffiffiffiffiffiffiffiffi

2�l20

q
Gmþn;nðiz=l0Þĉn;m;

(6)

with

fĉyn;m; ĉyn0;m0 g ¼ fĉn;m; ĉn0;m0 g ¼ 0;

fĉyn;m; ĉn0;m0 g ¼ �n;n0�m;m0 ;
(7)

with z ¼ xþ {y. jn;mi is the Landau eigenket.
hrjn;mi is the symmetric-gauge wave function.

ðe�jzj2=4l20=
ffiffiffiffiffiffiffiffiffiffi

2�l20

q

ÞGnþm;mðiz=l0Þ are two-dimensional

harmonic oscillator wave functions whose properties are
given in [19].

ĉyn;m is the fermionic creation operator that creates the
state jn;mi, namely, a fermion in the nth LL, with the
guiding center m obeying (7) with n ¼ 0; 1; 2; . . . ; �� 1
and m ¼ 0; 1; 2; . . . ; N� � 1. � ¼ N=N� is called the fill-

ing factor, where N� ¼ A=ð2�l20Þ is the degeneracy of

each Landau level. The atomic Hamiltonian (ĤL) can be

diagonalized in the Landau level basis yielding ĤL ¼
@!0

P1
m;n¼0 ðnþ ð1=2ÞÞĉyn;mĉn;m. Using 4cos2ðK � rÞ ¼

2þ 2 cosð2K � rÞ ¼ 2þ e�{2K�r þ e{2K�r, ĤI in the
Landau basis can be written as

ĤI ¼ @U0

4

�

N̂ þX

ĉy
n0;m0 ĉn;me

�2ðjKjl0Þ2

� ½Gn0;nð2K�l0ÞGm0;mð2Kl0Þ
þGn0;nð�2K�l0ÞGm0;mð�2Kl0Þ�

�

âyâ; (8)

where K ¼ Kx þ {Ky, K
� ¼ Kx � {Ky, jKj2 ¼ K2

x þ K2
y ,

and the summations are done over all available n, n0,m,m0.
If we assume that the interaction time between the cavity
and ultracold fermions is much shorter than any time scale
associated with the reorganization of the atomic ground
state in the presence of the standing wave inside the cavity,
the role of the interaction Hamiltonian (8) is restricted to
transfer momentum �2jKj to the particle-hole excitation
above the Fermi level.
By looking at the cavity transmission spectrum, we are

interested in studying such low-energy excitations above
an integer number of filled Landau level. Such particle-
hole excitations are bosonic in nature and are known as
magnetic exciton in the literature of quantum Hall systems
[20]. In the absence of atom-photon interaction, the ground
state of our system is a direct product state of photonic
vacuum and excitonic vacuum, obtained by completely
filling the first � Landau levels of each guiding center:

jGSi ¼ Y

N��1

m¼0

Y

��1

n¼0

cyn;mj0i: (9)

These inter-Landau-level excitations only involve the
change in the Landau level index; they can be studied
using the language of bosonization [21] by introducing
the bosonic operator
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b̂ypðkÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pN�J
2
pðkR�Þ

q
e�ðl0jkjÞ2=2

X

1

n¼0

X

1

m;m0¼0

ĉy
nþp;m0 ĉn;m

� ½Gnþp;nðl0k�ÞGm0;mðl0kÞ�: (10)

This operator creates a bosonic particle-hole excitation by
shifting an atom from the nth LL to the nþ pth LL, where

Jp is the Bessel function of the first kind, R� ¼ ffiffiffiffiffiffi

2�
p

l0, and

obeys

½b̂pðkÞ; b̂qðk0Þ� ¼ ½b̂ypðkÞ; b̂yq ðk0Þ� ¼ 0;

½b̂pðkÞ; b̂yq ðk0Þ� ¼ �ðk� k0Þ�p;q:
(11)

Using the commutators of the bosonic operator (11), the
bosonized version of the Landau level Hamiltonian (3) of
ultracold fermions can be written as

ĤL ¼ @
X

1

p¼1

X

k

p!0b
y
pðkÞbpðkÞ: (12)

The atom-photon interaction (8) can similarly be rewritten
in terms of the bosonic operator (10) as

ĤI ¼ @U0

4
N̂âyâþ @U0

4

X

1

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�pJ
2
pð2KR�Þ

q

� ½b̂ypð2KÞ þ b̂pð2KÞ�âyâ: (13)

The derivation of the Hamiltonians (12) and (13) from (8)
is given in the Supplemental Material [19]. The bosonized
effective Hamiltonian (2) of the atom-photon system thus
becomes

Ĥeff ¼ @
X

1

p¼1

�

X

k

p!0b̂
y
pðkÞb̂pðkÞ þ ��

p

ffiffiffiffi

p
p ½b̂ypð2KÞ

þ b̂pð2KÞ�âyâ
�

þ @�âyâ� {@�ðâ� âyÞ; (14)

��
p ¼ U0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�J
2
pð2KR�Þ

q

: (15)

The above Hamiltonian is one of the central result of this

Letter. Here the operator N̂ is replaced with its steady-state
expectation value; subsequently, the term ½ðN@U0Þ=2�âya
is incorporated into @�ca

ya of HC to get the effective
cavity detuning � ¼ !c �!p þ ðNU0=2Þ.

��
p is the atom-photon coupling constant that couples the

excited levels with the photon field. Figure 2 depicts its
variation with the field strength when an atom gets excited
from the filled LL to the next unoccupied LL. For that
purpose we choose experimentally achievable parameters:
� ¼ 500 nmðK ’ 107 m�1Þ, A’ð30�mÞ2, �¼2�MHz,
atomic massM ¼ 1:5� 10�25 kg, N ¼ 2000, g0 ¼ 2��
10 MHz, pump-atom detuning!p �!a ¼ 2�� 50 GHz.

It linearly depends on atom-photon coupling constant U0

and is enhanced by the Landau level degeneracy
ffiffiffiffiffiffiffi

N�

p

,

which is different as compared to the case of ordinary
fermions [17] and akin to the scaling of the atom-photon

coupling constant by
ffiffiffiffi

N
p

for an N-boson condensate [2,3].
In Fig. 2, with increasing �, the coupling constant oscil-
lates along with jump discontinuities. This is the usual
Shubnikov–de Haas effect [16], now occurring for a syn-
thetic magnetic field when the Fermi level makes a jump to
the previous level at some increased value of the field.
The other important feature, the oscillatory behavior of

��
p, can be attributed to the length scales associated with

the current problem. In the presence of synthetic gauge
field the cyclotron radius of the ultracold atoms
(l0 � 200–800 nm) is comparable with the wavelength of
the probing photon (�� 600 nm). With an increase in field
strength the cyclotron radius decreases and the number of
wavelengths that fit within this radius also changes, leading
to the oscillatory behavior of the atom-photon coupling
strength as a function of the field strength. In comparison,
in the corresponding electronic problem the electron
cyclotron radius is much smaller (l0 � 20 nm), so the
incident photon cannot actually see the individual cyclo-
tron orbit, making such oscillation hard to observe in
electronic LL spectroscopy [22,23].
The oscillation of the coupling constant as a function of

the strength of the synthetic gauge field can be obtained
from the steady-state cavity transmission spectrum, an
experimentally measurable quantity. The Hamiltonian
(14) represents a coupled system of particle-hole excita-
tions (magnetic exciton) and photons. The steady-state
solution of Heisenberg equations for operators associated
with the dynamics of exciton and photon yields the cavity
transmission spectrum. For this purpose we introduce
phase space quadrature variables

X̂L ¼ ½b̂ypð2KÞ þ b̂pð2KÞ�= ffiffiffi

2
p

;

P̂L ¼ {½b̂ypð2KÞ � b̂pð2KÞ�= ffiffiffi

2
p

;

FIG. 2 (color online). Variation of coupling constant (for
p ¼ 1) with synthetic field strength. The green steps in the
background correspond to the corresponding first empty LL,
� ¼ 6, 5, 4.
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which obey the standard commutator ½X̂L; P̂L� ¼ {. The
resulting Heisenberg equations are

dX̂L

dt
¼p!0P̂L;

dP̂L

dt
¼�p!0X̂L���

p

ffiffiffiffiffiffi

2p
p

âyâ;

dâ

dt
¼�{

X

1

p¼1

��
p

ffiffiffiffiffiffi

2p
p

X̂Lâ� {�âþ���âþ ffiffiffiffiffiffi

2�
p

âin:

(16)

Here, � is the cavity decay rate and âin denotes a
Markovian noise operator [24] with zero mean, correlation

hâyinðtÞâinðt0Þi ¼ 2��ðt� t0Þ, and hâinðtÞâinðt0Þi ¼ 0, so it
can be dropped for steady-state analysis. The steady-state
solutions are given by

P̂ðsÞ
L ¼ 0; X̂ðsÞ

L ¼ ���
p

ffiffiffiffiffiffi

2p
p

p!0

âyðsÞâðsÞ;

âðsÞ ¼ �

�þ {ð�� S�â
yðsÞâðsÞÞ ;

(17)

with [25]

S� ¼ 2

!0

X

1

p¼1

ð��
pÞ2 ¼ U2

0AM

32�@
½1� J20ð2KR�Þ�:

Therefore, the steady-state intercavity photon number is

n̂ph ¼ âyðsÞâðsÞ ¼ �2

�2 þ ð�� S�n̂phÞ2
: (18)

The cavity transmission spectrum is given by its
expectation value that follows

S2�n
3
ph � 2S��n

2
ph þ ð�2 þ �2Þnph ¼ �2: (19)

Such a nonlinear cubic equation is characteristic of optical
multistability [2,4]. Figure 3 shows the behavior of a
steady-state mean photon number as a function of pump
rate, and �. To understand this multistability we study the
fluctuation around the steady state through a linear stability
analysis. To that end, we write nph ¼ nsph þ �nph in

Eq. (19), where nsph corresponds to the steady-state inter-

cavity photon number plotted in Fig. 3(b). Then only the

FIG. 3 (color online). Steady-state interactivity photon number as a function of (a) pump cavity detuning for a set of synthetic field
and �=�; (b) pump rate for the same set of synthetic fields and cavity detuning � ¼ 2�� 2:5 MHz.

FIG. 4 (color online). Variation of S� with (a) number of trapped atoms and (b) gauge field strength.

PRL 111, 043603 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JULY 2013

043603-4



terms linear in �nph are kept in the resulting equation, and

the steady-state solution (19) is substituted in it to get

½3S2�ðnsphÞ2 � 4S��n
s
ph þ ð�2 þ�2Þ��nph ¼ 0: (20)

The solution of this equation defines the upper and lower
bounds of the unstable regime as the turning points of the
plot in Fig. 3(b). In the region between these two turning
points, the intercavity photon number is a decreasing func-
tion of the cavity parameter ð�=�Þ2 and corresponds to the
unstable solution [26–28].

A more formal way of doing the linear stability analysis
is through the Heisenberg equation of motion of the

operators, namely, setting OðtÞ¼OðsÞ þ�OðtÞ. However,
for the current problem, OðtÞ ¼ ½X̂LðtÞp¼1; P̂LðtÞp¼1;

X̂LðtÞp¼2; P̂LðtÞp¼2; . . . ; X̂ðtÞ; P̂ðtÞ�T , with X̂¼ðâyþ âÞ= ffiffiffi

2
p

,

P̂ ¼ {ðây � âÞ= ffiffiffi

2
p

being the cavity quadratures. The linear
stability analysis gets contributions from all p’s and the
resulting stability matrix is infinite dimensional and cannot
be handled in the same way as one in the absence of such
synthetic gauge field [17]. A more detailed discussion on
this issue is given in the Supplemental Material [19]. The
distance between the two turning points of the bistability
curve in Fig. 3(b) is calculated to be

hðS�Þ ¼ 4ð�2 � 3�2Þ3=2
27S�

: (21)

An experimentally obtained cavity spectrum [2–4] can be
used to extract the corresponding hðS�Þ, and hence the
corresponding S�, which can be compared with the theo-
retical value obtained from Eq. (17). Figure 4 provides the
informations about the Landau levels inside the cavity.

To summarize, we have shown that cavity optomechanics
could be a very useful tool to explore an ultracold atomic
system in a synthetic gauge field, providing us direct access
to the atomic Landau levels. Future studies may consider
the system in the limit when atom-photon interaction will
lead to the reorganization of the many-body atomic state in
the presence of the standing wave in the cavity as well as a
similar problem for the bosonic systems, where bosons will
prefer to stay in the lowest Landau level.

B. P. thanks V. Ravishankar for helpful comments.
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