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The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an

isolated, bounded (baryonic) mass, M, is �ðrÞ ¼ ðMGa0Þ1=2 lnðrÞ. Relativistic MOND theories predict

that the lensing effects ofM are dictated by�ðrÞ as general-relativity lensing is dictated by the Newtonian
potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy

gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized

standardly as 2�2) that depends only on M: � ¼ ðMGa0=4Þ1=4. I compare these predictions with recent

results of galaxy-galaxy lensing, and find agreement on all counts. For the ‘‘blue’’-lenses subsample

(‘‘spiral’’ galaxies) MOND reproduces the observations well with an r0-band M=Lr0 � ð1–3ÞðM=LÞ�, and
for ‘‘red’’ lenses (‘‘elliptical’’ galaxies) with M=Lr0 � ð3–6ÞðM=LÞ�, both consistent with baryons only.

In contradistinction, Newtonian analysis requires, typically, M=Lr0 � 130ðM=LÞ�, bespeaking a mass

discrepancy of a factor �40. Compared with the staple, rotation-curve tests, MOND is here tested in a

wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed

to several-times-lower accelerations–as low as a few percent of a0.

DOI: 10.1103/PhysRevLett.111.041105 PACS numbers: 04.50.Kd, 95.35.+d, 98.62.Sb

Introduction.—MOND is a theoretical framework posit-
ing strong departures from Newtonian dynamics and
general relativity (GR) at low accelerations. Initially,
‘‘MOND’’ denoted ‘‘modified Newtonian dynamics’’ [1],
but a number of different theories (both relativistic and non
relativistic) have subsequently been developed within this
framework; the term is used here to refer to the whole class
of theories. MOND aims to account for the mass discrep-
ancies in the Universe (including that associated with ‘‘dark
energy’’) without invoking new entities, such as ‘‘dark
matter’’ (DM). MOND introduces a new constant, a0,
with the dimensions of acceleration, belowwhich dynamics
depart from standard dynamics: the lower the acceleration
the larger the predicted discrepancy. Reference [2] is a
recent review of MOND.

MOND has been amply tested in disk galaxies of all
types, using rotation curves and the mass-rotational-speed
relation, over an acceleration range of �ð0:1–10Þa0, as
well as in very few elliptical galaxies (see, e.g., Ref. [3]).
It has also been tested in diverse pressure-supported, low-
acceleration systems, such as dwarf-spheroidal satellites
of the Milky Way (e.g., [4]) and of Andromeda [5], tidal
dwarfs [6,7], and small galaxy groups [8]. In galaxy clus-
ters,MONDdoes reduce themass discrepancy from a factor
of�10 to a factor of�2. This lingering, much reduced, but
systematically present discrepancy lends itself to various
explanations (such as being due to yet-undetected baryons,
or to neutrinos). However, until a concrete explanation is
confirmed, this residual discrepancy remains a challenge
for MOND (see Ref. [2] and references therein).

Some still view MOND as a mere ‘‘phenomenological
scheme’’ that accounts well for observed galaxy dynamics.
Partly in light of the successes of �CDM on large scales,

many hope to see the successful MOND predictions on
smaller scales explained, one day, within the DM paradigm
via some, yet mysterious, connections between baryons and
DM. I quite disagree with these views. First, MOND is
backed by full-fledged theories on par with Newtonian
dynamics in the nonrelativistic (NR) regime, and with GR in
the relativistic regime, and it is not more of a ‘‘scheme’’ and
less of a ‘‘theory’’ than these are. Second, as has been amply
explained, the extent, accuracy, and successes of theMOND
predictions are serious challenges for the DM paradigm,
evenmore so than its many direct conflicts with observations
on small scales (see, e.g., [2,9,10] for details). It remains to
be seen which of the two paradigms will prevails.
The technique of galaxy-galaxy lensing (GGL) uses the

statistically averaged, small distortions (weak lensing) of
background-galaxy images, produced by gravitational
lensing due to foreground galaxies (also averaged over
large subsamples), to measure the gravitational fields
around the latter (for a review see, e.g., Ref. [11]). This
method of mapping gravitational fields is less accurate than
rotation-curve analysis, and is only statistical in nature,
dealing, as it does, with average properties of large samples
of galaxies, not with individual ones. Yet, it offers impor-
tant advantages and extends MOND testing (and probing
of DM for those who think it is responsible for the mass
discrepancies) in areas not accessible to other methods.
(1): In individual elliptical galaxies, strong gravitational
lensing of quasars can only test MOND at small radii
where accelerations are of order a0, and so MOND effects
are small (see, e.g., Ref. [12]). It is hardly possible to test
the predictions of MOND in the low-acceleration regime—
where it matters most—for reasons explained in detail in
Refs. [2,3]. Two rare exceptions are described in Ref. [3].
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This leaves GGL as the only method to test MOND in the
very-low-acceleration (large radius) regimes of many ellip-
ticals, albeit in a statistical manner. (2) For disc galaxies,
rotation-curve analysis affords the most powerful and
accurate tests of MOND: It tests predictions of the detailed
shape and of the magnitude of the accurately determined
rotation curves of individual galaxies, from the baryon
mass distribution alone. But, rotation curves probe discs
only to intermediate radii—up to tens of kpc in some
galaxies—and down to accelerations only as low as
�a0=10. GGL, while cruder, extends the tests of MOND
in disc galaxies, to radii several times larger, and acceler-
ations several times lower. (MOND is seen in action at
even larger distances, but similar accelerations, in the
history of the Milky-Way-Andromeda system [13].) (3)
GGL tests MOND by a very different technique, using
unbound photons as probes, instead of bound massive
particles in other techniques, and so extends the compass
of MOND application and testing. (4) Unlike other meth-
ods, GGL involves aspects of relativistic MOND.

The recent results ofRef. [14], whichmap the ‘‘DMhalos’’
of galaxies using GGL, provide a vary useful and ready data
set. In particular, unlike most other analyses, it analyzes
the data in terms of ‘‘isothermal sphere halos,’’ which lends
them to direct comparison with the predictions of MOND.
I use these here to test MOND in the wide range of galactic
radii characterizing the asymptotic, but ‘‘isolated’’ regime.

An earlier MOND analysis of GGL is described in
Ref. [15], where some tension between MOND predictions
and the observations was claimed, in that in the two
highest-luminosity bins galaxies required too high bar-
yonic M=L values in MOND. However, the results of
Ref. [14], used here, are based on data rather superior to
those used in Ref. [15], whose analysis was, in addition,
beset by other issues, as discussed in Ref. [2].

In the section ‘‘The MOND predictions,’’ I derive the
MOND predictions and describe their underlying assump-
tions. These predictions are compared with the data in
the section ‘‘Comparison with the data.’’ The last section
is a discussion.

The MOND predictions.—TheMONDpredictionswe are
testing here concern the light bending effects of a mass (a
galaxy in our case) in the asymptotic and isolated regime of
radii. The asymptotic regime is defined, in the MOND con-
text, by two requirements: (1) The radii probed are beyond
the region containingmost of the baryonic mass. This makes
the predictions oblivious to details of the mass distribution,
which can then be taken as a point mass M (this then also
obviates effects of departures from the thin-lens approxima-

tion,which occur inMOND); (2) r � rM � ðMG=a0Þ1=2 �
11ðM=1011M�Þ1=2 kpc, where rM is the MOND radius of
the mass (a0 ¼ 1:2� 10�8 cm s�2 is used throughout).
This ensures that we are deep in the MOND regime, where
we can make universal predictions that are independent, for
example, of the MOND interpolating function.

By ‘‘isolated’’ we mean that the radii are small enough
that the acceleration field is dominated by the central mass,
and is not materially affected by the MOND external-field
effect (EFE) from external masses, such as neighboring
galaxies, clusters, or other large scale structures (see
Ref. [2] for details). (There is no detailed treatment of
the EFE on lensing of photons, which traverse large dis-
tances within the mother system that produces the EFE, as
well as near the affected mass itself (but see Ref. [16]).
However, since GGL measures derivatives of the potential,
I assume that the same criterion that applies to bound,
massive test particles applies here: The EFE is important
only if the external-field acceleration is of order or larger
than that of the internal field. In any event, the EFE is
ignored here, and this criterion is only used for justifying
this. When an EFE is present it can also mimic ellipticity
in the deduced fictitious ‘‘halo.’’)
We parametrize the external acceleration strength as�a0.

For example, the typical field of the large-scale structure, at
a random position, is estimated to have � of a few percents.
(Indicated, e.g., by the typical peculiar velocities of galaxies
of a few hundred km s�1, which would be reached, at such
accelerations, in about half the Hubble time. For more
detailed estimates of � see, e.g., Refs. [16–18].) We are in
the isolated regime for radii within

risol ¼ ��1rM � 275

�
M

1011M�

�
1=2

�
�

0:04

��1
kpc; (1)

which gives us a large range of radii where all conditions are
satisfied. (When dealing with lensing, another requirement
is of isolation from line-of-sight neighbors, which can
undermine the single-lens assumption used in the analysis.
This is addressed in Ref. [14].) At risol, the correction due to
the EFE is of order unity.
For such a regime, all existing NR, modified-gravity

MOND theories, such as the nonlinear Poisson version
[19], and QUMOND [20], predict a gravitational potential

�ðrÞ ¼ ðMGa0Þ1=2 lnðrÞ: (2)

Furthermore, the above NR MOND theories are the
limits of relativistic MOND theories—such as TeVeS
[21], MONDified Einstein aether theories [22], BIMOND
[23], and nonlocal versions [24]. These theories all predict
that the above NR MOND potential determines gravita-
tional lensing in the same way as the Newtonian potential
does in GR. In other words, the procedure applied in
Ref. [14], and other lensing analyses, to deduce the
Newtonian gravitational potential (of baryonsþ DM)
also gives the predicted MOND potential, produced by
baryons alone.
In the asymptotic regime, the MOND potential of Eq. (2)

strongly dominates the Newtonian potential of the baryons.
Thus in a Newtonian analysis, such as in Ref. [14], it would
be attributed to a DM halo of accumulated mass within
radius r

PRL 111, 041105 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JULY 2013

041105-2



Mhð<rÞ ¼ M
r

rM
¼

�
Ma0
G

�
1=2

r: (3)

This is the mass distribution of a so-called singular
isothermal sphere (SIS), which is one sort of halo that is
fitted to the data in Ref. [14]. The normalization is parame-
trized there by a SIS velocity dispersion, �, such that

Mhð<rÞ ¼
�
2�2

G

�
r: (4)

Comparing Eqs. (3) and (4), we see that MOND predicts
that the � value deduced from the lensing data should
depend only on M via:

� ¼
�
MGa0

4

�
1=4

: (5)

Note that, in MOND, �—used here for ease of comparison
with the findings of Ref. [14]—is not the velocity dispersion
of anymass component. In particular, it is not to be confused
with the baryonic velocity dispersion, �b, in the Galaxy.
It is simply a proxy for the asymptotic (predicted constant)

rotational velocity around M: 21=2� � V1 ¼ ðMGa0Þ1=4.
Thus theMOND predictions tested here are the logarithmic
potential, and the M� V1 relation (a.k.a., the baryonic
Tully-Fisher relation). (And, thus, we are not testing,
for example, some version of the Faber-Jackson, M� �b

relation, which is of a different nature. For this, MOND

predicts an approximate correlation �b � ðMGa0=20Þ1=4.
So �� 1:5�b is predicted.)

To be directly comparable with the data of Ref. [14], this
prediction is written in terms of the luminosity:

� ¼ 166:7L1=4
11 ð�BÞ1=4 h�1=2

72 km s�1: (6)

Here, L11 � L=ð1011h�2L�Þ, �B is the baryonic mass-
to-light ratio (M=L) of the galaxy in solar units, in
the same photometric band where L is measured,
h � H0=ð100 km s�1 Mpc�1Þ, and h72 � h=0:72 (H0 is
the Hubble constant). I use these normalizations because
Ref. [14] uses L everywhere (in the photometric r0 band)
in units of h�2L�, and adopt h ¼ 0:72.

Comparison with the data.—Reference [14] used imag-
ing data of galaxies from the Canada-France-Hawaii
Telescope Legacy WIDE survey, with good measures of
the photometric redshift of the galaxies. They conducted a
GGL analysis of their source galaxies by their lens galaxies,
and fitted their signals as being due to three possible types of
DM halos. The type relevant to us here is of the SIS halo
models. For different lens-luminosity bins, Ref. [14] fitted
for the � parameter of the SIS. The relevant lensing signal
appears to come from projected radii R * 50h�1

72 kpc,
which, comparing with the values of rM, ensures, by and
large, that we are in the asymptotic MOND regime. Also,
only the lensing signal within R< 140h�1

72 kpc (projected
on the sky) was used in the SIS fits. This is done to ensure
relative freedom from distortion of the signal by masses
other than the galaxy under study (see detailed discussion of

this point in Ref. [14]). We see from Eq. (1), which refers to
the 3D radius, that this, by and large, also ensures isolation
in the MOND sense if the external field is not too high (as
would be the case, e.g., near a rich galaxy cluster). It does
ensure, for example, for most galaxy positions, freedom
from the EFE by large scale structure. It also justifies
neglecting the EFE in groups that are not too compact and
rich, for example for groups containing less than 25 galaxies
of the type under study within a radius of�700 kpc, or 100
galaxies within �1:5 Mpc. Reference [14] does not give
enough information to assess the exact importance of the
EFE, but we see from the above that, statistically, it is not
expected to be important. (The fact that the SIS fits work
well (see below), in itself, lends support to the unimportance
of the EFE in the analysis.)
The analysis is done, and results are shown, separately

for the subsample of lenses classified as ‘‘blue’’—thought
to be dominated by late-type, spiral galaxies—and the
subsample of ‘‘red’’ galaxies—thought to be dominated
by early-type, ellipticals. This segregation is particularly
important when testing MOND: We are not interested in a
mere phenomenological dependence of the lensing signal
on luminosity; we need the dependence on the baryonic
mass; so we need to convert luminosities to baryonic
masses assuming reasonable mass-to-light ratios. Since
galaxies in the two subsamples are known to have different
M=L values, such a separation is imperative.
Now to the comparison with the MOND predictions.

Reference [14] makes the general statement: ‘‘the mea-
sured gravitational shear signal is isothermal for
R � 280h�1

72 kpc.’’ This is consistent with the MOND

prediction regarding the r dependence of the lensing
signal [Eqs. (2) and (3)]. (The signal can also be fitted
with other halo density laws, such as a Navarro-Frenk-
White law, which are hard to distinguish from SIS with
the data in the R range used in the fit.) For each of their
bins of luminosity, L, in each of the two lens subsamples,
the normalization of the SIS potential is best fitted for �.
A plot of � vs L is shown in Fig. 28 of Ref. [14],
reproduced here in Fig. 1.
I also show in Fig. 1 the �-L relations predicted

by MOND [in Eq. (6)], for four values of the r0-band
�B

r0 ¼ 1, 1.5, 3, 6.

The ‘‘baryonic’’M=L values, which need to be used, can
be larger than stellarM=L values, standardly discussed in the
literature, and calculated from population-synthesis models,
as they must reckon with the mass in gas as well as that in
stars. The difference may be quite significant in neutral-gas-
reach galaxies, which would belong typically, in the low-
luminosity, ‘‘blue’’ type, where �B can be several times
larger than the stellar value (see, e.g., data on this in
Table 4 of Ref. [25]). And, hot gas in ellipticals also increases
�B over the stellar value.
We see that the data agree with the MOND predictions

for �B
r0 � 1–3 for the ’’blue‘‘ galaxies, and �B

r0 � 3–6 for
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the ‘‘red’’ ones, and that within each group � / M1=4 is
approximately satisfied with these M=L values. In fact,
Ref. [14] gives the best fit �-L power-law correlation:
for the ‘‘blue’’ galaxies: � / L0:23	0:03, and for the ‘‘red’’
ones: � / L0:24	0:03. Both are in very good agreement with
the MOND prediction � / M0:25, if �B

r0 does not vary

much, systematically, within each subsample. The normal-
ization of these fits are pinned in Ref. [14] by � ¼ �
 at
L11 ¼ L


11 ¼ 0:16: �
 ¼ 115	 3 km s�1 for the ‘‘blue,’’
and �
 ¼ 162	 2 km s�1 for the ‘‘red’’ subsample.
MOND predicts these normalizations for �B

r0 of 1.5 and

5.9, respectively. Thus, the MOND predictions shown for
�B

r0 of 1.5 and 6 practically coincide with the best fits of

Ref. [14], and agree with all the data within the quoted
errors.

Some systematic variation of �B
r0 with Lr0 , within each

sample (as well as scatter for a given Lr0) are consistent (but
not required) by the results of Ref. [14]. Since, by selection,
the higher-redshift lenses tend to be more luminous, lumi-
nosity evolution with redshift can contribute to such sys-
tematics. Another influence could be the change in relative
contribution of the gas to the baryonic mass. However, it is
difficult to pinpoint the exact causes with the scant infor-
mation we have. In any event, these M=L variations are
very minor compared with the differences between the
dynamicalM=L values required by Newtonian/GR dynam-
ics and by MOND, which constitutes our main result here.

The M=L values MOND requires are very reasonable
baryonic values. For example, Ref. [26] shows (in its
Fig. 4) stellar M=Lr values for ellipticals, both measured
and calculated from population synthesis, which agree well
with a range of �B

r0 � 3–6MOND requires here (they used

h ¼ 0:7). Another pertinent recent determination of bar-
yonic M=Lr for the inner parts of compact, early-type
galaxies, is Ref. [27], who finds (its Fig. 3) �B

r to correlate
with �b, and vary between �B

r � 3 for �b ¼ 100 km s�1

(�� 150 km s�1) and �B
r � 6 for �b ¼ 250 km s�1 (��

375 km s�1) (using h ¼ 0:7). This is quite consistent with
what we see in Fig. 1. MOND is thus consistent with a no
mass discrepancy. In comparison, the Newtonian/GR
analysis in Ref. [14], using halo models of finite mass
gives much larger dynamical M/L values. For example,
truncated isothermal spheres of L ¼ L
 are found to have a
joint-sample mean Mdyn=L�130h72ðM=LÞ�, correspond-
ing to a mass discrepancy * 30.
Reference [14] also gives the best-fitted truncation

radius for a truncated-isothermal-sphere halo using the
combined ‘‘blue’’-‘‘red’’ sample, for the reference lumi-
nosity L
 ¼ 3:1� 1010h�2

72 L�: rtrunc � 255h�1
72 kpc.

Taking �B
r0 ¼ 3 gives a MOND acceleration at this radius

of � 4� 10�2a0. This is consistent with this truncation
being due to the EFE of a background field of a few
percents of a0 [see Eq. (1)].
Reference [14] also shows the �-L relations after

correcting for some modeled evolution of L with redshift.
The changes seem rather small to make a difference in the
present context. The quoted slopes become 0:26	 0:03
(red) and 0:25	 0:03 (blue).
Discussion.—We found that MOND’s predictions of

existing formulations match the GGL measurements and
analysis of Ref. [14]. These predictions are clear-cut and do
not involve details of the theory, such as knowledge of the
MOND interpolating function (apart from possible influen-
ces of the EFE, which I estimated not to be important, by
and large). While not as accurate and detailed as rotation-
curve tests in individual disc galaxies, and while only
statistical, this MOND test is a major advance: It probes,
in all galaxy types, unprecedentedly large radii and very
low accelerations—arguably as low as can be testedwithout
running into the omnipresent EFE from large-scale struc-
tures.Our results add to all the caseswhereMOND is shown
to work well, which teach us, collectively, that baryons
alone determine the whole dynamics of galaxies through
the simpleMOND prescription. This is quite contrary to the
expectations in the DM paradigm, where the purported DM
halo by far dominates the dynamics over baryons, and
where the amount and distribution of baryons in the putative
DM halo are determined by haphazard, violent, and unpre-
dictable processes (such as supernovae and active galactic
nuclei causing losses of most of the baryons in a galaxy).
How can then the puny baryons, constituting only a
few percent of the total required dynamical mass,

FIG. 1 (color online). The MOND predictions of the GGL,
�� Lr0 relations, Eq. (6), for baryonic mass-to-light ratios
�B

r0 ¼ 1, 1.5, 3, 6 (lines marked with �B
r0 ). The measurements

are reproduced from Fig. 28 of Ref. [14]: ‘‘blue’’ lenses (blue
squares), ‘‘red’’ lenses (red triangles, thick error caps where error
bars overlap). The predicted lines for �B

r0 of 1.5 and 6 are

practically the same as the best-fit relations found in Ref. [14]
for the ‘‘blue’’ and ‘‘red’’ lenses, respectively.
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and occupying only a minute fraction of the studied
volume, determine all the effects attributed to a much
more massive, and much more extended DM halo, through
a simple, universal relation?
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