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We study a minimal model of active transport in crowded single-file environments which generalizes

the emblematic model of single-file diffusion to the case when the tracer particle (TP) performs either an

autonomous directed motion or is biased by an external force, while all other particles of the environment

(bath) perform unbiased diffusions. We derive explicit expressions, valid in the limit of high density of

bath particles, of the full distribution PðnÞðXÞ of the TP position and of all its cumulants, for arbitrary

values of the bias f and for any time n. Our analysis reveals striking features, such as the anomalous

scaling / ffiffiffi
n

p
of all cumulants, the equality of cumulants of the same parity characteristic of a Skellam

distribution and a convergence to a Gaussian distribution in spite of asymmetric density profiles of bath

particles. Altogether, our results provide the full statistics of the TP position and set the basis for a refined

analysis of real trajectories of active particles in crowded single-file environments.
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Introduction.—Single-file diffusion refers to one-
dimensional diffusion of interacting particles that cannot
bypass each other. Clearly, in such a geometry, the initial
order of particles remains the same over time, and this very
circumstance appears so crucial that the movements of
individual particles become strongly correlated: the dis-
placement of any given tracer particle (TP) on progres-
sively larger distances necessitates the motion of more and
more other particles in the same direction. This results in a
subdiffusive growth of the TP mean-square displacement

X2 � ffiffi
t

p
, first discovered analytically by Harris [1] and

subsequently reestablished for systems with differently
organized dynamics (see, e.g., Refs. [2–8]). Nowadays, a
single-file diffusion, prevalent in many physical, chemical,
and biological processes, has been experimentally evi-
denced by passive microrheology in zeolites, transport of
confined colloidal particles, or charged spheres in circular
channels [9–13]. It provides a paradigmatic example of
anomalous diffusion in crowded equilibrium systems, which
emerges due to a cooperative many-particle behavior.

On the other hand, systems that consume energy
for propulsion—active particle systems—have received
growing attention in the last decade, both because of the
new physical phenomena that they display and their wide
range of applications. Examples include self-propelled
particles, such as molecular motors or motile living cells
[14], and externally driven particles, such as probes in
active microrheology experiments [15]. The intrinsic out-
of-equilibrium nature of these systems leads to remarkable
effects such as non-Boltzmann distributions [16], long-
range order even in low spatial dimensions [17], and
spontaneous flows [18]. In particular, 1D assemblies of

active particles have been extensively studied in the
context of asymetric simple exclusion process models
(see Ref. [19] for a recent review).
However, up to now, active transport in diffusive single-

file systems, which involves an active TP performing an
autonomous directed motion or pulled by a constant exter-
nal force f in a 1D bath of unbiased diffusive particles with
hard-core interactions, has drawn uncomparably less atten-
tion [20]. Such dynamics, depicted in Fig. 1, provides a
minimal model of active transport in crowded single-file
environments, which schematically mimics situations as
varied as the active transport of a vesicle in a crowded
axone [21], directed cellular movements in crowded chan-
nels [22], or active microrheology in capillaries [15]. In
this context, the only available theoretical results concern
the large time behavior of the mean displacement �X of the
TP, which has been shown to grow sublinearly with time
�X� ffiffi

t
p

[23–26]. In fact, the biased TP drives the bath
particles to a nonequilibrium state with an asymmetric
distribution: the bath particles accumulate in front of the
TP, thus increasing the frictional force, and are depleted
behind. The extent of these perturbations grows in time in
proportion to

ffiffi
t

p
and characterizes a subtle interplay

between the bias, formation of nonequilibrium density
profiles, and backflow effects of the medium on the TP.
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X

FIG. 1 (color online). Model notations.
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In this Letter, we focus on this minimal model of active
transport in diffusive single-file systems. Going beyond the
previous analysis of the TP mean displacement, we present
in the limit of high density of bath particles exact expres-

sions of the full distribution PðnÞðXÞ of the TP position and
of all its cumulants for arbitrary values of the bias f and for
any time n. In particular, in this high density limit, it is
shown that at large times this distribution converges to a
Gaussian, with mean �X � �fð�Þ

ffiffiffi
n

p
and variance growing

asymptotically as
ffiffiffi
n

p
. Remarkably, in this limit, the vari-

ance is proved to be independent of f. Altogether, our
results provide the full statistics of the TP position and
set the basis for a refined analysis of real trajectories of
active particles in crowded single-file environments.

The model.—Consider a one-dimensional, infinite in
both directions, line of integers x, populated by hard-core
particles present at mean density �, performing symmetric
random walks. At t ¼ 0, we introduce at the origin of the
lattice an active TP, hopping on its right (respectively, left)
neighbor site with probability p1 (respectively, p�1),
which process is also constrained by hard-core exclusion.
In what follows, we focus on the limit of a dense system,
corresponding to the limit of a small vacancies density
�0 ¼ 1� � � 1. In this limit, it is most convenient to
follow the vacancies rather than the particles. We thus
formulate directly the dynamics of the vacancies, which
unambiguously defines the full dynamics of the system.
Following Refs. [27,28], we assume that at each time step,
each vacancy is moved to one of its nearest neighbor sites
with equal probability. As long as a vacancy is surrounded
only by bath particles, it thus performs a symmetrical
nearest neighbor random walk. However, due to the biased
nature of the movement of the TP, specific rules have to be
defined when a vacancy is adjacent to the TP. In this case, if
the vacancy occupies the site to the right (respectively, to
the left) of the TP, we stipulate that it has a probability
q1 ¼ 1=ð2p1 þ 1Þ [respectively, q�1 ¼ 1=ð2p�1 þ 1Þ] to
jump to the right (respectively, to the left) and 1� q1
(respectively, 1� q�1) to jump to the left (respectively,
to the right). These rules are the discrete counterpart of a
continuous time version of the model [29], as shown in
Ref. [28]. Note that a complete description of the dynamics
would require additional rules for cases where two vacan-
cies are adjacent or have common neighbors; however, these
cases contribute only toOð�2

0Þ and can thus be left unstated.
Single file with a single vacancy.—The dynamics of the

TP is controlled by the first-passage statistics of vacancies
to the TP position. In the case of an infinitely strong bias
p1 ¼ 1, a simple analysis based on this idea (developed
later) provides large time asymptotics of the cumulants of
the position. However, in the case of a general bias, subtle
anticorrelations arise and require the more careful treat-
ment presented below. We start with an auxiliary problem
in which the system contains just a single vacancy initially
at position Z and which will be proved next to be a key step

in the resolution of the complete problem with a (small)

concentration of vacancies. Let pðnÞ
Z ðXÞ denote the proba-

bility of having the TP at site X at time moment n, given
that the vacancy commenced its random walk at Z. Clearly,
in a single-vacancy case, this probability is not equal to
zero only for X ¼ 0 and X ¼ 1, if Z > 0, and X ¼ 0 and
X ¼ �1, if Z < 0. Following Refs. [27,28], we then rep-

resent pðnÞ
Z ðXÞ as a sum over all passage events of the

vacancy to the TP location:

pðnÞ
Z ðXÞ ¼ �X;0

�
1� Xn

j¼0

FðjÞ
Z

�
þ Xþ1

p¼1

Xþ1

m1;m2;...;mp¼1

� Xþ1

mpþ1¼0

�m1þ���þmpþ1;n�X;½ðsgnðZÞþð�1Þpþ1Þ=2�

�
�
1� Xmpþ1

j¼0

FðjÞ
ð�1Þp

�
F
ðmpÞ
ð�1Þpþ1 � � �Fðm2Þ�1 Fðm1Þ

Z ; (1)

where �a;b ¼ 1 when a ¼ b and is equal to zero, other-

wise, and FðnÞ
Z is the probability that the vacancy, which

started its random walk at site Z, arrived at the origin for
the first time at time moment n. The first term in the right-
hand side of Eq. (1) represents the event that at time n, the
TP has not been visited by any vacancy, while the second
one results from a partition both on the number p of visits
and waiting times mi between visits of the TP by the
vacancy.
Now let ĝð�Þ denote the generating function of any

time-dependent function gðnÞ, ĝð�Þ � P1
n¼0 g

ðnÞ�n. Then,

Eq. (1) implies that the generating function of the propa-
gator of the single-vacancy model can be expressed via the
generating functions of the corresponding first-passage
distributions as

p̂�1ðX;�Þ ¼ �X;0ð1� F̂�1Þ þ �X;�1F̂�1ð1� F̂	1Þ
ð1� F̂1F̂�1Þð1� �Þ ;

(2)

where we have used the short notations F̂�1 � F̂�1ð�Þ.
Single file with a small concentration of vacancies.—We

now turn to the original problem with a small but finite
density �0 of vacancies and aim to express the desired

probability PðnÞðXÞ of finding the TP at site X at time n via
the propagator for a single-vacancy problem. We consider
first a finite chain with L sites, M of which are vacant, and
the initial positions of the latter are denoted by Zj,

j ¼ 1; . . . ;M. Then, the probability PðnÞðXjfZjgÞ of finding
the TP at position X at time moment n as a result of its
interaction with all the vacancies collectively, for their
fixed initial configuration, writes

PðnÞðXjfZjgÞ ¼
X

Y1;Y2;...;YM

�X;Y1þ���þYM
PðnÞðfYjgjfZjgÞ;

(3)
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where PðnÞðfYjgjfZjgÞ stands for the conditional probability
that within the time interval n, the TP has performed a
displacement Y1 due to interactions with the first vacancy, a
displacement Y2 due to the interactions with the second
vacancy, etc. In the lowest order in the density of vacan-
cies, the vacancies contribute independently to the total
displacement of the tracer, so that the latter conditional
probability decomposes

PðnÞðfYjgjfZjgÞ ��0!0

YM
j¼1

pðnÞ
Zj
ðYjÞ; (4)

where pðnÞ
Zj
ðYjÞ is the single-vacancy propagator and the

symbol ��0!0 signifies the leading behavior in the small

density of vacancies limit. Note that such an approximation
yields results which are exact to the order Oð�0Þ, and
hence, such a description is expected to be quite accurate
when �0 � 1 [27,28]. Next, we suppose that initially the
vacancies are uniformly distributed on the chain (except
for the origin, which is occupied by the TP) and average

PðnÞðXjfZjgÞ over the initial distribution of the vacancies. In
doing so and subsequently turning to the thermodynamic
limit, i.e., setting L ! 1, M ! 1 with M=L ¼ �0 kept
fixed, we find that the generating function of the second
characteristic function

c Xðk;�Þ �
X1
n¼0

ln½ ~PðnÞðkÞ��n; (5)

where ~PðnÞðkÞ � P1
X¼�1 PðnÞðXÞeikX satisfies

lim
�0!0

c Xðk;�Þ
�0

¼ � X
�¼�1

�
1

1� �
� ~p��ðk;�Þei�k

�

� X1
Z¼1

F̂�Zð�Þ: (6)

Our last step consists of the explicit determination of F̂�1

and
P1

Z¼1 F̂�Zð�Þ in Eq. (6). We note that both can be
readily expressed via the first-passage time density at the
origin at time n of a symmetric one-dimensional Polya
random walk, starting at time 0 at position l, denoted as

fðnÞl , since, by partitioning over the first time when the sites

adjacent to the origin are reached, we have

FðnÞ
�1 ¼ ð1� q�1Þ�n;1 þ q�1

Xn
k¼1

fðk�1Þ
1 Fðn�kÞ

�1 : (7)

Multiplying both sides of Eq. (7) by �n, performing sum-

mation over n, and taking into account that f̂lð�Þ ¼P
fðnÞl �n ¼ ½ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p Þ=��jlj [30], we find that

F̂�1 ¼ ð1� q�1Þ�
1� q�1ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Þ
: (8)

Similarly, noticing that

FðnÞ
Z ¼

8<
:
P

n
k¼1 f

ðkÞ
Z�1F

ðn�kÞ
1 if Z > 0P

n
k¼1 f

ðkÞ
�1�ZF

ðn�kÞ
�1 if Z < 0

(9)

and using the definition of f̂lð�Þ given above, we obtain

X1
Z¼1

F̂�Zð�Þ ¼ F̂�1

1� ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Þ=�
: (10)

Gathering the results in Eqs. (7)–(10), substituting them
into Eq. (6), we finally derive our central analytical result
which defines the exact (in the leading in �0 order) gen-
erating function of the cumulants �j of arbitrary order j,

themselves defined by ln½ ~PðnÞðkÞ� � P1
j¼1ð�ðnÞ

j =j!ÞðikÞj:

lim
�0!0

�̂jð�Þ
�0

¼ F̂1ð1� F̂�1Þ þ ð�1ÞjF̂�1ð1� F̂1Þ
ð1� �Þ½1� ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p Þ=��ð1� F̂1F̂�1Þ

:

(11)

This result gives access to the full statistics of the position
of the TP and puts forward striking characteristics of active
transport in dense diffusive single-file systems as detailed
below.
(i) The first conclusion we can draw from Eq. (11) is that

for arbitrary f (including f ¼ 0), all odd cumulants have
the same generating function �̂oddð�Þ and all even cumu-
lants have the same generating function �̂evenð�Þ. This
means that at any moment of time and for any f, all

cumulants �ðnÞ
j with arbitrary odd j are equal to each other

�ðnÞ
2jþ1 ¼ �ðnÞ

odd, and so do all the cumulants with arbitrary

even j, �ðnÞ
2j ¼ �ðnÞ

even.

Parenthetically, we note that, in the classical case of
single-file diffusion (i.e., f ¼ 0), the generating function

in Eq. (11) can be inverted explicitly to give �ðnÞ
odd � 0 and

for arbitrary time moment n

lim
�0!0

�ðnÞ
even

�0

¼ 2ffiffiffiffi
�

p �ðbn�1
2 c þ 3

2Þ
�ðbn�1

2 c þ 1Þ ; (12)

where �ð�Þ is the Gamma function and bxc is the floor
function. This expression, which can be shown to be com-
patible with the well-known Gaussian form in the large
time limit, seems to be new.
(ii) Second, turning to the limit � ! 1 (large-n limit),

we find the leading in time asymptotic behavior of the
cumulants of arbitrary order:

lim
�0!0

�ðnÞ
2jþ1

�0

¼ ðp1�p�1Þ
ffiffiffiffiffiffi
2n

�

s
� 2p1p�1ðp1�p�1Þþoð1Þ;

(13)
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lim
�0!0

�ðnÞ
2j

�0

¼
ffiffiffiffiffiffi
2n

�

s
þ oð1Þ: (14)

Equations (13) and (14) signify that, remarkably, the lead-
ing in time behavior of all even cumulants is independent
of the force f, while the leading in time behavior of all
odd cumulants does depend on f. In addition, for the
standard choice of the transition probabilities such that
p1 ¼ 1� p�1 and p1=p�1 ¼ expð�fÞ, where � is the
reciprocal temperature, and for the specific case j ¼ 0,
we check from Eq. (13) that

lim
�0!0

�X

�0

¼ tanhð�f=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2n=�

p
; (15)

which reproduces, for j ¼ 0, the results of Refs. [24,25].
Note that this anomalous scaling / ffiffiffi

n
p

holds for all
cumulants.

(iii) In the specific case of an infinitely strong force f,
these large time behaviors can be understood from a simple
picture relying on the first-passage time properties of the
independent diffusing vacancies obtained above. In this
case of a directed motion, the position of the TP is given
by the number of times the TP has been visited by any of
the vacancies located ahead of it. This quantity is itself
easily related to the waiting time distribution between
two consecutive visits of a vacancy to the TP. Using the
standard tools of the target annihilation problem (see, for
instance, Refs. [31,32]), the corresponding survival proba-
bility SðnÞ, i.e., the probability that at step n the TP has not
been visited by any of the vacancies, can be written as

SðnÞ ¼ e��0�ðnÞ with

�ðnÞ ¼ X1
Z¼1

FðnÞ
Z �n!1

ffiffiffiffiffiffi
2n

�

s
; (16)

where we have used the relation (10). Adopting now for
the sake of simplicity a continuous time description, the
Laplace transform of the renewal process XðtÞ reads

LfPr½XðtÞ ¼ m�gðsÞ ¼ ŜðsÞ½1� sŜðsÞ�m; (17)

where ŜðsÞ stands for the Laplace transform of the survival
probability [30]. Noticing that Eq. (16) leads to

lim
�0!0

1� sŜðsÞ
�0

�s!0

1ffiffiffi
2

p
s3=2

; (18)

it is finally found by using Tauberian theorems that

lim
�0!0

�jðtÞ
�0

�t!1

ffiffiffiffiffi
2t

�

s
; (19)

in agreement with the leading contribution of Eqs. (13) and
(14) in the specific case p1 ¼ 1. Note that this simple
picture where each vacancy that started ahead of the TP
interacts at most once with the TP so that all steps of the
TP are independent holds only in the regime of infinitely

strong force. For a finite force, a given vacancy can visit
many times the TP, leading to nontrivial anticorrelation
effects quantified by our exact solution.
(iv) We finally provide an explicit expression of the full

distribution function PðnÞðXÞ for any n. As a matter of fact,
the equality at leading order in �0 of cumulants of the same
parity proved in point (i) shows that the distribution asso-
ciated to these cumulants is of Skellam type [33], so that

PðnÞðXÞ ’�0!0 expð��ðnÞ
evenÞ

�
�ðnÞ
even þ �ðnÞ

odd

�ðnÞ
even � �ðnÞ

odd

�
X=2

� IX

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ðnÞ

evenÞ2 � ð�ðnÞ
oddÞ2

q �
; (20)

where IXð�Þ is the modified Bessel function. Importantly,
we find that despite the known asymmetry of the concen-
tration profile of the bath particles [24], the rescaled

FIG. 2 (color online). Odd cumulants at time n ¼ 100 vs �0.
The straight lines define our predictions in Eq. (11) for different
values of p1, while the filled and empty symbols are the results
of numerical simulations for the first and third cumulants,
respectively. Circles are results for p1 ¼ 0:55, squares for
p1 ¼ 0:6, triangles for p1 ¼ 0:75, and diamonds for p1 ¼
0:98. The inset shows analogous results for the second and
fourth cumulants.

FIG. 3 (color online). Reduced cumulants ~�ðnÞ
even ¼

�ðnÞ
even=

ffiffiffiffiffiffiffiffiffiffiffiffi
2n=�

p
and ~�ðnÞ

odd¼�ðnÞ
odd=½ðp1�p�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2n=�

p �2p1p�1ðp1�
p�1Þ� vs time n for �0 ¼ 0:01 and (a) p1 ¼ 0:6 and
(b) p1 ¼ 0:98. Solid lines give the results of the inversion of
Eq. (11), while symbols are the results of numerical simulations.
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variable ðX � �ðnÞ
oddÞ=

ffiffiffiffiffiffiffiffiffiffi
�ðnÞ
even

q
is asymptotically distributed

accordingly to a normal law.
Note finally that the regime of validity of our expres-

sions with respect to the density �0 is tested in Fig. 2,
where we compare our theoretical predictions for the
cumulants, obtained by the inversion of our general
Eq. (11), against the results of numerical simulations for
different values of the density �0 of the vacancies, for
different forces f [defined as �f ¼ lnðp1=p�1Þ] and a
fixed time moment n ¼ 100. We observe a very good
agreement for very small values of �0 and conclude that,
in general, the approach developed here provides a very
accurate description of the TP dynamics for �0 & 0:1.
Further on, in Fig. 3, we plot our theoretical predictions
for the time evolution of the cumulants for different values
of the force and at a fixed density �0. Again, we observe a
perfect agreement between theory and simulations. Note
that for small fields, the reduced odd cumulants approach 1
from above while for strong fields from below. Last, we
compare in Fig. 4 our prediction in Eq. (20) against the
numerical data and again observe a very good agreement
between our analytical result and numerical simulations.
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