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We present a theory of flexural wave propagation on elastic shells having nontrivial geometry and

develop an analogy to geometric optics. The transport of momentum within the shell itself is anisotropic

due to the curvature, and as such complex classical effects such as birefringence are generically found. We

determine the equations of reflection and refraction of such waves at boundaries between different local

geometries, showing that waves are totally internally reflected, especially at boundaries between regions

of positive and negative Gaussian curvature. We verify these effects by using finite element simulations

and discuss the ramifications of these effects for the statistical mechanics of thin curved materials.
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Curved shells appear in nature over a vast range of
length scales from carbon nanotubes [1] to continental
plates [2]. Understanding their mechanics and, in some
cases, equilibrium fluctuations plays a key role in a variety
of systems of interest in biological physics and material
science such as viral capsids [3,4], cellular membranes
[5–7], plant morphogenesis [8], and self-assembled ori-
gami [9–11]. In spite of the large range of length scales
and material properties, the mechanics of these shells are
unified by the constraints imposed by the coupling of
elasticity and geometry in materials whose lateral extent
is much larger than their thickness.

This geometric property leads to a dramatic separation
of the energy scales associated with bending and stretch-
ing. Generically, thin sheets and filaments are significantly
softer to bending, allowing a unified treatment of wrin-
kling, crumpling, and a host of other morphological tran-
sitions under external forces or confinement [12–18].
Shells having a more complex geometry in their unstrained
state, however, develop an inherent resistance to bending
from the geometric coupling of the soft bending mode to
the stiffer stretching one [19,20], as a consequence of
Gauss’s theorema egregium, which relates changes in
Gaussian curvature to stretching of the surface. Recently,
an analysis of curved shell indentation by Vaziri and
Mahadevan [21] of the response to static locally imposed
forces has shown that the linear response of the deforma-
tion field depends qualitatively on the sign of the Gaussian
curvature.

Motivated by this analysis, we examine in this Letter the
propagation of flexural waves in shallow shells of constant
curvature. We show that there is a useful analogy between
this problem and the more familiar analysis of the propa-
gation of light with the local curvature playing the role of
the index of refraction. We derive an analog of Snell’s law
for refraction between two interfaces with differing optical
properties; in our case, the material is identical across the

interface, but only the local geometry changes. We find that
curved shells are generically birefringent and may exhibit
total internal reflection. Additionally, waves within regions
of negative curvature propagate primarily along certain
directions, and interfaces separating positive and negative
Gaussian curvature regions lead generically to a range of
incident angles that exhibit total internal reflection. The
combination of these two effects indicates that curved
elastic manifolds may act as barriers causally disconnect-
ing regions of differing Gaussian curvature, leading to
anomalously slow phonon equilibration, with potential
implications for the statistical mechanics of such surfaces.
Even with a linear constitutive relation for the material’s

elasticity, the equations governing elasticity of thin sur-
faces are nonlinear due to geometry. For certain cases,
however, they may be linearized and useful expressions
coaxed from the more general ones. The energy functional
that describes a thin, elastic shell is given by F ¼R
SðN��E�� þM��K��Þ, where E�� and K�� are the

deformation tensors associated with strain and bending
of a surface, respectively. A linearly elastic material
allows us to write the local stress tensor as N�� ¼
Yh½ð1� �ÞE�� þ �E�

�� and the bending moment tensor

as M�� ¼ �½ð1� �ÞK�� þ �K�
��; these linear functionals

of the curvature and deformation tensors of the surface
introduce Young’s Y and bending � moduli, the shell
thickness h, and Poisson ratio �. The details are standard
and can be found in Refs. [22,23].
The Euler-Lagrange equations that result from this

expression are nonlinear in both geometry and deforma-
tion. In only a few situations are there known analytic
solutions that take into account the nonlinearities of geo-
metric origin [24,25]. Conversely, by considering a flat
shell but retaining the nonlinearities in the deformation
state, one arrives at the Föppl–von Kármán equations,
which are notoriously difficult to solve [26]. We will
consider the intermediate asymptotic limit of the
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Donnell-Mushtari-Vlasov equations [21,22], where non-
linearities in the deformation field are neglected but
stresses introduced by leading order curvature terms are
retained. In this case the deformation tensors may be
written in terms of the in-plane displacements v�, the
normal displacement � , and the curvature tensor of the
undeformed shell d�� as

K�� � D�D��; (1)

E�� � 1

2
ðD�v� þD�v�Þ � d���; (2)

with D� the covariant derivative on the surface. These
approximations neglect terms higher order than Oðd��Þ
in the stress. This results in neglecting terms of the form

d��d
�
�M

�� and D�ðd��M��Þ in the force balance, substan-

tially simplifying the analysis. In the absence of d��, these

deformation tensors reduce to the flat case and the equa-
tions of plate elasticity are recovered. In anticipation of
examining a ‘‘shallow’’ shell, we assume that the spatial
extent of the deformations is small compared to the shell’s
radii of curvature, so we may replace covariant derivatives
by partial derivatives: D� ! @�. In the same limit we may
simplify the in-plane stresses by introducing the Airy stress
function �, defined by N�� ¼ ��	��
@	@
� (��� is the

2D alternating tensor). We are immediately led to the
following equations of undulatory dynamics (in vacuum)
and compatibility of the surface [22]:

�r4� �L½�� ¼ ��h
@2�

@t2
; (3)

1

Yh
r4�þL½�� ¼ 0; (4)

where � is the shell’s mass density. The linear operator
L ¼ ��	��
d��@	@
 is a measure of the incompatibility

of the surface with the flat space solution [27] and couples
bending and stretching through the local curvature.
In analogy to the standard development of Snell’s law, in

which one considers the propagation of light across an
interface separating two regions with differing but spatially
uniform dielectric constants, we consider flexural waves
propagating from one region of constant curvature to an-
other—see Fig. 1(a). A continuously varying local geome-
try may later be accounted for by a succession of such
interfaces between regions of constant curvature. A flexu-
ral wave propagates through one region, with a given
(possibly anisotropic) dispersion relation, impinges upon
a region of differing geometry, and must conserve momen-
tum at the interface due to translational invariance; hence,
momentum conservation requires refraction [28]. Unlike in
classical optics, where any two dielectric constants may, in
principle, be in contact, the continuity of the surface and its
local slopes forces the principal curvature along the inter-
face to remain constant. Consequently, there are only four
possible combinations of curvature mismatch allowed at an
interface—see Fig. 1(b). In all cases, we choose a coordi-
nate system aligned with the principal axes of curvature; it
will be useful to further parameterize their geometry by
defining � ¼ Rx=Ry to be the ratio of these principal

curvatures.
To examine the dispersion relation for traveling plane

waves in regions of constant geometry, we look for

solutions of Eqs. (3) and (4) of the form �ðx; tÞ ¼
eiq�x�i!t�̂ðq; !Þ, �ðx; tÞ ¼ eiq�x�i!t�̂ðq; !Þ, obtaining a
dispersion relation !ðqÞ as the solution to [29,30]

�h!2 ¼ �q4 þ Yh

q4
L2

q; (5)

L q ¼
q2y
Rx

þ q2x
Ry

; (6)

From this solution we determine the group velocity vg ¼
@!=@q of flexural waves to be

!ðqÞ@!
@q

¼2q3q̂þð1��Þsin2�
q

ðsin2�þ�cos2�Þq̂?; (7)

where � is the angle between q and the x axis, and we have
nondimensionalized times and lengths by ! ! !=!R and
q ! q‘, where !2

R ¼ Y=ðR2
x�Þ is the radial ‘‘ringing fre-

quency’’ of a cylinder of radius Rx, and ‘
4 ¼ �R2

x=Yh. For
q‘ � 1 the shell can be considered in the ‘‘membrane’’
limit, where bending terms can be completely neglected.
For q‘ � 1 the shell is essentially flat. Our analysis
focuses on q‘� 1. The first term in Eq. (7) reproduces
the usual flexural wave dispersion relation for thin plates

(a) (b)

FIG. 1 (color online). (a) Schematic of flexural waves refract-
ing upon passage from one region of curvature to another,
separated by the black line. Two refracted waves are produced
in the birefringent (cylindrical) region on the right.
(b) Prototypical interface types for traveling flexural waves on
curved surfaces. Along the interface, kinematic constraints re-
quire the curvature to be continuous, leaving only a small
number of possible choices.
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�h!2 ¼ �q4, while the second term carries momentum
perpendicular to the wave vector and depends on curvature.
The magnitude of the group velocity is also anisotropic as
shown in Fig. 2 for saddle, ellipsoidal, and cylindrical
surfaces.

For a generic anisotropic surface, a flexural ray will
bend with respect to the principal axes. In order to
address this, consider the anisotropic term in Eq. (7):
ð1� �Þ sinð2�Þðsin2�þ �cos2�Þ. Except for a sphere
(� ¼ 1), this term is generally nonvanishing, so that the
group and phase velocities are not collinear, unless the
waves propagate along the principal curvature directions
�� ¼ 0, =2. When not along one of these special direc-
tions where they do not bend, rays bend towards the
direction of smallest curvature for �> 0 [31]. For �<0,
there is a new special direction �� ¼ tan�1

ffiffiffiffiffiffiffiffi��
p

: If �<��,
the rays bend towards the x axis; otherwise, they bend
towards the y axis. These results can be understood in
terms of Fermat’s principle [29,31,32].

We now turn to the refraction and reflection at the
boundary between two different geometries. A ray with
wave vector q making an angle of �i with respect to the x
axis is injected into a region with principal curvature ratio
�i and encounters a boundary along the y axis (see Fig. 1)
with a different geometry, parameterized by �t, and wave
number k. Matching the undeformed surface at the bound-
ary requires Ry to be continuous through the interface,

resulting in four allowed configurations—see Fig. 1(b).

We calculate the transmitted angle �t with respect to the
boundary normal—see Fig. 1—in terms of the incident
angle �i by imposing conservation of the momentum tan-
gent to the interface, i.e., jqj sin�i ¼ jkj sin�t, resulting in
the Snell’s law analog

½!2 �Að�i; �iÞ�1=4 sin�i ¼ ½!2 �Að�t; �tÞ�1=4 sin�t;
(8)

whereAð�; �Þ ¼ ð�cos2�þ sin2�Þ2 contains the geomet-
ric information. The simplest forms of these results are for
a plate, cylinder, sphere, and saddle, where A ¼ 0, sin4�,
1, and cos2ð2�Þ, respectively.
Several representative curves of �t as a function of �i are

shown in Fig. 3(a) (for simplicity, we use only � ¼ 0,	1).
The dashed and solid curves show the transmitted ray
angles—two solutions are possible in birefringent cases.
There are no solutions in the gray regions indicating total
internal reflection (TIR). We do not show results for the
sphere-cylinder interface, since we wish to highlight the
effects of anisotropy on birefringence and TIR; these ef-
fects are far more pronounced in the other prototypical
interfaces. Consider as an example the plate-cylinder inter-
face (see Supplemental Material [33] for numerical tests of
this case), where the incident region hasA ¼ 0, while the
cylindrical region has Að0; �tÞ ¼ sin4�t. Because the cy-
lindrical region has an anisotropic dispersion relation, the
phase velocity can be multivalued, and, in order to

(b)(a) (c)
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FIG. 2 (color online). Examples of anisotropic flexural wave group velocities for different values of �. Figures show group velocities
on a polar plot, with � measured from the positive x axis. Black symbols show group velocity measurements from finite element
simulations—see Supplemental Material—[33] to be compared to the (solid blue line) predictions of the linearized theory. (a) For
saddles �< 0, the velocity has at least four lobes of maximum speed (compare to the static deformation characteristics in Ref. [21]) as
seen for � ¼ �1, �3 [solid (blue) and dashed (red) lines, respectively], with q ¼ 1. (b) Group velocities at q ¼ 1 for ellipsoidal
surfaces for � ¼ 1 (solid blue line), a sphere, and � ¼ 2 (dashed red line) show smaller variations with direction. (c) Cylinders are
more pathological because � ¼ 0 and the Gaussian curvature is zero. As a result, the anisotropy depends solely on the wave number:
q ¼ 0:5, 0.75 [solid (blue) and dashed (red) lines, respectively]. This pathology is seen most clearly in the magnitude of disagreement
between the linearized theory and the finite element simulations; see Supplemental Material [33] for more details.

PRL 111, 038101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JULY 2013

038101-3



conserve momentum, it is possible that two rays are trans-
mitted. This birefringence occurs in anisotropic dielectric
media as well and results from the multivaluedness of the
phase velocity in the medium [34]. Interfaces that include
regions of negative Gaussian curvature include bands of
TIR, as opposed to a critical angle above which all the
incident rays are reflected. The solutions of Eq. (8) depend
on both frequency and incident angle. Scanning over the
input parameters, we arrive at the plots shown in Fig. 3(b),
in which regions of single transmitted ray propagation (S),
dual ray propagation (B), and total internal reflection (T)
are shown. For large !, the curvature effects disappear, as
the interface becomes transparent to sufficiently short
wavelengths, except at grazing incidence. It is of particular
interest that in saddle regions most of the energy propa-
gates at particular angles that depend on �; this point taken
in tandem with Snell’s law results indicates that for the
right value of � and ! flexural waves will be trapped
within the negative Gauss curvature regions.

To test these analytic results, we performed finite ele-
ment simulations using ABAQUS (Dassault Systemés) on a
closed shell having boundaries between regions of constant
geometry; see Supplemental Material [33] for simulation
details. The most dramatic results are obtained at bounda-
ries between positive and negative Gaussian curvature.
Consequently, we examine the ‘‘peanut’’ shell in Fig. 4

formed from a catenoidlike region (negative Gauss curva-
ture) with � � �0:5 bounded at the top and bottom by
spherical caps� ¼ 1. The boundaries are shown by (black)
dashed lines. At time t ¼ 0, we apply an oscillatory point
force at the equator of the shell with! � 1 (left) or! � 5
(right). For!� 1 the analytic theory predicts a wide range
of incident angles leading to TIR—see Figs. 3(a) and 3(b),
bottom panel; we see that for short times waves are con-
fined to the saddle region reflected off the top and bottom
boundaries—see Fig. 4(a). Over time, they leak into the
spherical caps due primarily to transmission occurring
at normal incidence, as expected from the theory—see
Fig. 3(b), bottom panel. For ! � 5, the interface is pre-
dicted to be essentially transparent; indeed, the simulation
shows that waves propagate freely across the boundary—
see Fig. 4(b).
We have shown the utility of an analogy to geometric

optics for understanding the dynamics of flexural waves on
surfaces of nontrivial geometry. Curvature acts as the local
index of refraction, and interfaces between positive and
negative Gaussian curvature, in particular, lead to total
internal reflection of waves propagating from the negative
curvature side. This suggests that such boundaries generate
causally disconnected regions on the manifold such that
flexural waves in the two sectors cannot equilibrate, at least
within our linear analysis. The implications for the statis-
tical mechanics of such waves on manifolds of complex
geometry have not been explored. More generally, one may
inquire about the role of localization and enhanced back-
scattering from randomly curved surfaces even without the

(a) (b)

FIG. 4 (color online). Finite element simulations showing total
internal reflection at the boundary of negative and positive
Gaussian curvatures, denoted by the dashed line. (a) For ! �
1, the linear theory predicts a range of incident angles for which
rays exhibit TIR. For this shell, with � � �0:5, the rays propa-
gate preferentially at �� � tan�1ð ffiffiffiffiffiffiffiffi��

p Þ � 35
, which falls
within the predicted band of incident angles for TIR. The shell
does not have a constant curvature, and we use a point force
instead of a plane wave so the wave trapping is temporary. Over
longer times, they leak into the positive Gaussian curvature
region. (b) For ! � 5, the shell is predicted to be essentially
transparent. This too is supported by the simulation.
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FIG. 3 (color online). Transmitted angle as a function of
the incident angle, for ! ¼ 0:5. (a) Representative curves for
Ref�tg as a function of �i. Gray regions represent areas where
Imf�tg � 0, indicating total internal reflection. (b) Single mode
transmission (S), birefringence (B), and total internal reflection
(T) at different frequencies for different geometries (displayed as
insets).
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singular limit of crumpling [35–37]. In addition to such
random shapes, one may be able to use prescribed geome-
tries to redirect flexural waves with a purely geometric
waveguide to ‘‘cloak’’ regions of the membrane, as has
been explored by using anisotropic metamaterials [38].
Nonlinearities ignored here are known, in some cases, to
lead to anomalous elasticity [7,27] and result in dynamical
equations reminiscent of weak turbulence [39]; the role of
geometry in such cases remains to be fully explored.
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