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We construct a class of projected entangled pair states which is exactly the resonating valence bond

wave functions endowed with both short range and long range valence bonds. With an energetically

preferred resonating valence bond pattern, the wave function is simplified to live in a one-parameter

variational space. We tune this variational parameter to minimize the energy for the frustrated spin-1=2

J1 � J2 antiferromagnetic Heisenberg model on the square lattice. Taking a cylindrical geometry, we are

able to construct four topological sectors with an even or odd number of fluxes penetrating the cylinder

and an even or odd number of spinons on the boundary. The energy splitting in different topological

sectors is exponentially small with the cylinder perimeter. We find a power law decay of the dimer

correlation function on a torus, and a lnL correction to the entanglement entropy, indicating a gapless

spin-liquid phase at the optimum parameter.
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Introduction.—Resonant valence bond (RVB) states,
which were first proposed by Anderson [1] to describe a
possible ground state for the S ¼ 1=2 antiferromagnetic
(AF) Heisenberg model on a triangular lattice, and later to
explain the possible mechanism of high-Tc cuprates [2,3],
provide us a rich tool box to construct the so-called spin-
liquid states. The equal weight superposition of the nearest
neighbor (NN) RVB state on square lattice was shown to be
critical [4,5]. Several numerical works [6–9] have demon-
strated that the equal weight NN RVB states on the kagome
and triangular lattices are Z2 spin-liquid states. Recently,
numerical breakthroughs claimed a spin-liquid ground
state for the kagome Heisenberg model [10,11] and the
frustrated spin-1=2 J1 � J2 AF Heisenberg model on the
square lattice [12,13]. However, these works did not give
direct access to the topological nature of the spin-liquid
states; therefore, a simple variational wave function
approach is highly desirable. Although the variational
energy of the NN RVB state on the kagome lattice [7,9]
is still higher than the energy obtained via the density
matrix renormalization group method [10], the topological
nature is well understood within the formalism of the
projected entangled pair states (PEPSs) [7]. On the other
hand, from a projective wave function [14] approach sup-
plemented by a projective symmetry group analysis all
possible spin-liquid states on the triangular [15], kagome
[15–18], and honeycomb [19] lattices have been obtained
and classified but, for all lattices, the energetically

favorable states are believed to involve longer range
RVB. As a result, it is natural to think that a general
RVB state within the PEPS formalism is a more practical
variational wave function, where one can gain simulta-
neously an optimized energy and a comprehensive picture
of the topological nature.
In this Letter, we introduce a general RVB state written

as aD ¼ 3 PEPS, different from Refs. [6,7]; i.e., it includes
valence bonds of all lengths.With a properly chosen singlet
sign convention that meets all lattice symmetries on the
square lattice, weminimize the energy of the spin-1=2 J1 �
J2 AF Heisenberg model at J2 ¼ 0:5J1 against a single
variational parameter c governing the decay amplitude of
the long range valence bonds. The idea is therefore to
introduce a simple yet competing wave function that ena-
bles us to fully understand the topological properties of the
ground state of the frustrated magnets.
RVB states in PEPS formalism.—The equal weight su-

perposition of the NN RVB states can be constructed using
a PEPS with bond dimension D ¼ 3 as follows: each
physical site has four virtual spins attached, each of which
spans a virtual dimension of spin 1=2 � 0. From the bond
point of view, every pair of the NN virtual spins is pro-
jected to a block diagonal virtual spin singlet state:

jSi ¼ j01i � j10i þ j22i; (1)

here the virtual indices ‘‘0, 1’’ span the subspace of spin
1=2 and virtual index ‘‘2’’ spans the subspace of spin 0.
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At the physical site, a projector enforces one of the virtual
spins with its spin-1=2 subspace to be mapped to the
physical spin-1=2 state and the rest of virtual spins to
stay in the spin 0 subspace, i.e., the 2 state:

P 1 ¼
X4

k¼1

ðj"ih0jk þ j#ih1jkÞ � h222j=k; (2)

here subscript ‘‘=k’’ stands for all except k. This PEPS, by
contracting the virtual index of each S at the bond and each
P 1 at the vertex, represents exactly the equal weight NN
RVB states [20].

To allow long distance singlet pairings, we need spins to
teleport: enforcing a singlet between sites i and j that are
already paired in singlets (s1, i) and (s2, j) will generate a
singlet pair (s1, s2). The following projector realizes spin
teleportation without increasing the bond dimension:

P 2 ¼
X

i�j�k�l

ðj"ih0ji þ j#ih1jiÞ � h2jj � h�jkl; (3)

here j�ikl � j01ikl � j10ikl, and it forces spins connected
via this site by bonds k and l into a singlet. A general RVB
wave function is a parameter c weighted combination of
projectors P � P 1 þ cP 2 at each vertex V � fvg traced
out with the bond singlets S at each bond B � fbg,

j�iRVB ¼ Y

V

P
Y

B

jSi: (4)

The sign convention and symmetries.—Figures 1(a)–1(d)
enumerates four possible P 1 projectors and eight P 2 pro-
jectors at each vertex. The bond singlet S is chosen such
that NN singlets point from sublattice A to B; the corner
singlets, which play the role of singlet teleportation, are
oriented counter clockwise and preserve all lattice symme-
tries. The sign convention is demonstrated in Fig. 1(e).

The nearest NN singlet arises through two bond singlets
and one corner singlet, as in Fig. 2(a). However, the weight
of a diagonal singlet is comprised of two shortest paths of
equal magnitude but opposite sign; thus, the net weight of
the diagonal singlet is zero. The only shortest path to build
the next range AB sublattice singlet is shown in Fig. 2(b),

and it consists of three bond singlets and two corners. The
sign of the next range AB singlet is pointing from sublattice
A to B. In general, no AA pairings survive [21] and all AB
pairings point from sublattice A to B. To verify this result,
we implement a Monte Carlo (MC) sampling of the singlet
distribution of (3) and calculate the weight hðdx; dyÞ
defined in Ref. [14] as a function of separation. The result
is presented in Fig. 2(c) and is consistent with the above
analysis.
Variational ground state energies at J2 ¼ 0:5J1.—We

consider the general RVB wave function on a cylinder with
finite cylindrical circumference Nv and infinite horizontal
length Nh ¼ 1. The physical properties are determined by
the eigenvector with the largest eigenvalue of the transfer
matrix. Let us introduce a horizontal (vertical) parity num-
ber Gh (Gv) which is defined by counting the number of
singlets modulo two that cross a horizontal (vertical) line
joining the two boundaries of the cylinder (going around
the cylinder). The two states withGh ¼ �1 (þ is even and
� is odd) are orthogonal to each other in the thermody-
namic limit, and can be transformed from one to another by
a cyclic spin permutation�� operator winding around the
cylinder as illustrated in Figs. 3(a) and 3(b).
The Gh ¼ �1 states are not the minimally entangled

states [22]. However, their superpositions,

j�ð�Þi � j�iGh¼1 � j�iGh¼�1; (5)

with a relative� sign are. A good reason for it is that these
states (5) can be written as simple PEPSs: the j�ðþÞi state
is the state corresponding to Eq. (4), and j�ð�Þi state is
obtained by inserting a ‘‘vison’’ line to the PEPS for the
state j�ðþÞi as in Fig. 3(c). These minimally entangled
states are referred to as the even-flux (j�ðþÞi) states and
the odd-flux (j�ð�Þi) states which stand for the even and
odd number of flux penetrating the cylinder. We will show
next that these four states j�ð�1Þie=o are (bulk) ground

FIG. 1 (color online). (a)–(d) Red thick lines denote mappings
of a virtual spin 1=2 to a physical spin 1=2, the blue dashed lines
represent the singlet pairings of two virtual spin 1=2s, and the
black thin lines represent the virtual spin 0 states. (e) The local
sign convention for the bond singlets (in light green arrows) and
the corner singlets (in dashed blue arrows).

FIG. 2 (color online). (a) The nearest NN singlet (s1, s2) pairs
through two bond singlets and one corner singlet via two paths,
which cancel each other. (b) The next allowed AB sublattice
pairing (s1, s2) through three bond singlets and two corner
singlets. (c) The weight distribution in the Liang-Doucot-
Anderson picture with a linear color scale for a 8� 8 torus at
c ¼ 0:35. hðdx; dyÞ is theweight of a singlet at separation (dx, dy),
where hð1; 0Þ ¼ 1. The plotted color scale takes the square root of
hðdx; dyÞ to magnify the weight of the long range singlet.
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states of the gapless spin-liquid state, here the subscript
e=o refers to the boundary quantum number Gv.

The variational energies of j�ð�Þie=o on cylinders with

finite perimeter Nv ¼ 4, 6, 8 (Nv must be even, otherwise
the system dimerizes) are computed exactly via the transfer
matrix method and shown in Fig. 4(a) (an even or odd
number of flux is chosen to provide the lowest energy) as a
function of the variational parameter c. The best variational
energy for the spin-1=2 J1 � J2 AF Heisenberg model at
J2 ¼ 0:5J1 is c ¼ 0:35ð1Þ with Nv ¼ 4, 6, 8. To access
larger system size, we study a complementary geometry
where the cylinders are cut open, with the top and bottom
vertical virtual spins set to 2s. We call them the finite (Nv)
width strips. For a contractible geometry as strips, the flux
parity is no longer meaningful, but the boundary parity
quantum number Gv ¼ eðoÞ still holds. We simulate the
leading eigenvectors of the transfer matrix of the strips by
the matrix product states with the same quantum number
Gv in both bra and ket. The ground state energies as a
function of the variational parameter c for both sectors

(j�ie=o) of the strips with Nv ¼ 10; . . . ; 18 are presented

in Fig. 4(b). The best variational energy for J2 ¼ 0:5J1 is at
c ¼ 0:35, which is in good consistency with the case of
finite perimeter cylinders.
The variational energies of the even and odd sectors at

the optimum parameter c ¼ 0:35 as a function of inverse
width 1=Nv are shown in Figs. 5(a) and 5(b), with cylinders
of size Nv ¼ 4, 6, 8 and strips up to Nv ¼ 36. A linear
regression is applied to the even sector of the strips and a
thermodynamic limit of E1 ¼ �0:48612ð2Þ is obtained.
This energy is competing on the third decimal digit to the
best variational estimate of E1 ¼ �0:4943ð7Þ with a
D ¼ 9 PEPS [13], let alone the fact that here we vary
only one variational parameter in a D ¼ 3 PEPS. A con-
jecture about the ground state energies of the gapless and
gaped spin-liquid states is that the energy splittings
between different topological sectors become exponen-
tially small with the system size [23–25]. This conjecture
is verified in Figs. 5(c) and 5(d), which present on semilog
scales the energy difference between all sectors and E1 for
cylinders and between the two existing energy sectors for
strips.
Correlation functions and entanglement entropy.—We

define the spin and dimer correlation functions as
the ground state expectation values CðrÞ ¼ hS0 � Sri
and D	ðrÞ ¼ hðS0 � S1ÞðSr � Srþ1Þ � ðS0 � S1ÞðSr�1 � SrÞi.
Figure 6(a) plots the dimer correlation functions on a
cylinder with Nv ¼ 8 for all topological sectors at the
optimal parameter c ¼ 0:35. The odd sectors have very
slowly decaying dimer correlations due to an odd number
of spinons sitting on the boundaries; thus, the system
effectively becomes an odd-width cylinder and the
Majumdar-Ghosh-type of degeneracy emerges. We can

FIG. 3 (color online). (a) The parity quantum number Gv (Gh)
is defined by counting the number of singlets (solid thick blue
lines) modulo two crossed by a vertical loop (horizontal line) in
dashed black line. (b) By cyclically permuting all spins in a loop
winding around the cylinder, a Gh ¼ 1 configuration in (a) is
transformed into a Gh ¼ �1 configuration in (b). Singlets in
solid thin green lines are affected by the permutation operator.
(c) An odd-flux state is defined by inserting operator Z on all
vertical bonds crossed by a horizontal line to Eq. (3).
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eliminate the boundary effect by setting the system on a
torus and carrying a variational MC simulation for PEPSs
[26]. We found the dimer correlation function exhibits a
power law decay D	ðrÞ 
 ðð�1Þr=raÞ with a ¼ 1:4, as
shown in Fig. 6(c). In contrast, the decay of the spin
correlation function for all sectors on a cylinder or on a
torus remains exponential with a correlation length
�s � 1:1, as evidenced in Figs. 6(b) and 6(d). Figure 7
shows the Renyi entropy S2ðLÞ of an area L� L on a 2L�
L torus for size L ¼ 4; 6; . . . ; 20. The fitted line of aL�
ð1=2Þ lnLþ b reflects the lnL correction from the oriented
string picture [21]. The expected logarithmic correction
has been discussed in other well-known gapless systems
[27–29]. The simulation is done via MC sampling of the
RVB configuration [30]. Finally, we also would like to
point out that the logarithmic correction is very hard to
be detected on a small system size. If we fit S2 with a form
aLþ b on a small system size, we find that the constant
b ¼ �0:68ð1Þ, which is very close to � ln2. Such an
observation implies that the observed � ln2 constant in
the density matrix renormalization group calculation [12]
is insufficient to rule out the possibility of a gapless spin-
liquid ground state for the J1 � J2 Heisenberg model on a
square lattice.

Conclusion and outlook.—We constructed a class of
projected entangled pair states which exactly represent
general RVB wave functions with all bond length contri-
butions. Upon choosing an energetically preferred RVB
pattern, we are able to build a one-parameter manifold of
variational RVB D ¼ 3 PEPSs which preserve all lattice
symmetries. Minimization of the variational energy for the
frustrated spin-1=2 J1 � J2 AF Heisenberg model on
the square lattice yields, at J2 ¼ 0:5J1, an energy E1 ¼
�0:48612ð2Þ per site in the thermodynamic limit. In the
case of a cylinder geometry, four orthogonal topological

states were identified, namely, the even-flux and odd-flux
states with an even and odd number of spinons on the
boundary. We found the dimer correlation function decays
algebraically while the spin correlation function still
decays exponentially. The entanglement entropy scaling
reveals the lnL correction to the area law. Both features
point toward the gapless spin-liquid nature of our con-
structed RVB wave function.
The PEPSs construction of the general RVB states can

be applied to other bipartite and nonbipartite lattices,
where the Schwinger boson spin-liquid states under the
projective symmetry group analysis have been found
[15–19,31], but for which thermodynamic energies and
correlation functions are still unknown due to a negative
sign problem in the valence bond MC simulations. Within
the PEPS formalism all of these can be easily studied.
Our PEPS construction of the RVB states can be further
generalized to accommodate a more complicated pairing
pattern which can improve further the ground state
energy, although it would possibly require a larger bond
dimension.
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