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The microscopic structure of spin-orbit fields for the technologically important Fe/GaAs interface is
uncovered from first principles. A symmetry based method allows us to obtain the spin-orbit fields—both
their magnitude and orientation—for a generic Bloch state, from the electronic band structure for any
in-plane magnetization orientation. It is demonstrated that the spin-orbit fields depend not only on the
electric field across the interface, but also surprisingly strongly on the Fe magnetization orientation,
opening prospects for their magnetic control. These results give important clues in searching for spin-orbit
transport and optical phenomena in ferromagnet/nonmagnet heterostructures.

DOI: 10.1103/PhysRevLett.111.036603

In solid-state systems lacking space inversion symmetry,
spin-orbit coupling (SOC) acts on the electronic structure
as a spin-orbit field (SOF), which is an effective magnetic
field whose direction and magnitude depend on the elec-
tron momentum [1,2]. The most prominent examples are
the Dresselhaus spin-orbit field [3], describing the effects
of bulk inversion asymmetry in zinc blende semiconduc-
tors, and the Bychkov-Rashba spin-orbit field [4], describ-
ing the effects of structure inversion asymmetry in
asymmetric quantum wells. Apart from semiconductor
structures, where Bychkov-Rashba coupling has been
extensively studied [2,5,6], it has been investigated in
many other systems, for example, on metallic surfaces
[7-12], graphene on a Ni substrate [13], or in Au and Ag
monolayers on W(110) substrates [14]. A striking mani-
festation of spin-orbit coupling in condensed matter is the
spin-momentum locking in topological insulators [15].

Spin-orbit coupling can be controlled by an electric
field [16]. This fact has long been used to motivate
spintronics applications as epitomized by the Datta-Das
transistor [17] in which the gate controls the spin-orbit
induced spin precession of the itinerant electrons in a
transistor channel. But spin-orbit coupling is also impor-
tant for anisotropic magnetotransport. Tunneling aniso-
tropic magnetoresistance (TAMR), for example, can be
used to control electrical transport by rotating the mag-
netization orientation of a single ferromagnetic layer.
It has been observed and studied in a variety of systems,
GaMnAs/Al [18], Fe/GaAs, [2,19], CoFe/GaAs [20]
(inserting a MgO barrier suppresses TAMR here [21],
a clear evidence for interface induced symmetry of the
effect), Co/Pt [22], Si/ferromagnet junctions [23], reso-
nant tunnel devices [24], or on an atomic scale in
STM experiments [25]. Interfacial spin-orbit coupling
has been proposed to control thermoelectric anisotropies
in helimagnetic tunnel junctions [26] and produce spin-
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In earlier studies of spin-orbit coupling on surfaces
[7-9,11,12,28] and interfaces [13,14], the spin-orbit
Hamiltonian was extracted by fitting the energy bands
close to the I' point assuming a Bychkov-Rashba-type
coupling. This standard procedure requires a priori knowl-
edge of the specific functional form of the spin-orbit field
and applies only to very small k vectors for which small-
momentum expansions are meaningful. Here, we introduce
a novel method to obtain spin-orbit fields (not just the
functional parameters) for a generic k point directly from
ab inito data. On the example of an Fe/GaAs junction,
important for room temperature spin injection [29-33] and
TAMR [19,34], we derive a formula for the magnitude and
direction of the momentum dependent spin-orbit fields
directly from the electronic band structure. The results
show highly anisotropic (with respect to the momentum
orientation) patterns, which take on different forms, from
the ones known in semiconductor physics for small mo-
menta to more exotic ones for Bloch states further away
from the I" point.

One fascinating outcome is a qualitative dependence of
the spin-orbit field patterns on the band (energy), consis-
tent with the bias-induced inversion of the TAMR observed
in experiments [19,35]. Even more important, in addition
to their sensitivity on an electric field, the spin-orbit fields
can depend unusually strongly on the magnetization direc-
tion, to the point that the anisotropy axes can be flipped by
rotating the magnetization. We emphasize that those
effects are caused by the symmetry of the interface, not
of the bulk structures, making them particularly important
for lateral transport in ultrathin hybrid ferromagnet-
nonmagnet junctions.

We consider thin Fe/GaAs slabs. The small latticOe mis-
match between twice the lattice constant of Fe (2.87 A) and
GaAs (5.65 A) allows for a smooth epitaxial growth of Fe
on a GaAs (001) surface. Early investigations of the stabil-

transfer torque in ferromagnet-topological insulator ity of 1 X 1 Fe/GaAs interfaces within density functional
junctions [27]. theory [36] showed that, when more than two atomic layers
0031-9007/13/111(3)/036603(5) 036603-1 © 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.111.036603

PRL 111, 036603 (2013)

PHYSICAL REVIEW LETTERS

week ending
19 JULY 2013

of Fe are deposited on a GaAs (001) surface, the flat or
partially intermixed interfaces are more stable than the
fully intermixed one, the As-terminated flat interface being
more stable than the partially intermixed one. On the other
hand, a recent Z-contrast scanning transmission electron
microscopy reported a single plane of alternating Fe and
As atoms at an Fe/AlGaAs interface [37,38]. Since the
choice of the interface is not important to the message of
our Letter, we choose an As-terminated flat interface.

The electronic structure of an ideal Fe/GaAs slab, con-
taining 9 (001) atomic layers of GaAs with the diagonal
lattice spacing d = a/ V2 =13.997 A and three atomic
planes of bee Fe has been calculated using the full potential
linearized augmented plane wave technique implemented
in the FLEUR code [39] and a generalized gradient approxi-
mation for the exchange-correlation functional [40].
The code uses the scalar relativistic approximation; the
SOC for the valence electrons is treated within the second
variational method.

The band structure of the Fe/GaAs slab along the high
symmetry lines connecting the S-I"-X points in the BZ is
shown in Fig. 1 for a magnetization orientation along the
[110] direction. The spin character of bands 1 and 2 in
Fig. 1 is basically determined by the interface atoms. The
interface unit cell contains interfacial As, the neighboring
Ga, and two Fe atoms. The spin-up character of band n = 2
is dominated by the interfacial As atom, its neighboring Ga
atom, and Fe atom above Ga, while the spin-down charac-
ter of band n = 1 comes mostly from the two Fe atoms.

The noncentrosymmetric GaAs layer is of D,,; symme-
try, exhibiting the bulk inversion asymmetry spin-orbit
coupling. The interface lowers the symmetry to C,, with
the twofold rotation axis C, along the growth direction
[001] [2]. The C,, symmetry accounts for both the bulk
inversion asymmetry and the structure inversion asymme-
try; the C,, spin-orbit field lies in the plane of the slab,
perpendicular to the growth direction. Since C,, symmetry

X

FIG. 1 (color online). Calculated band structure for the
Fe/GaAs slab and magnetization along [110]. The states with
spin-up (spin-down) character at the Fe/GaAs interface are
emphasized by blue filled (red open) circles whose radii are
proportional to the corresponding charge density at the interface
atoms. The inset shows the As-terminated flat 1 X 1 interface
model assumed in the study.

has only one-dimensional orbital irreducible representa-
tions, away from accidental level (anti)crossings the
spin-orbit fields (even at high symmetry points) can be
described by spin-1/2 Pauli matrices.

The most general SOC Hamiltonian consistent with C,,,
symmetry can be written for the in-plane momenta around
the I" point as

g-[so = :u“n(kx: ky) ¢)kxay + nn(kx’ ky: (P)kyo-x, (1)

where k, and k, are the components of the in-plane wave
vector k, o, and o, are the Pauli matrices, and x and y
correspond to the diagonal [110] and [110] crystallo-
graphic directions in GaAs, respectively, ¢ refers to the
magnetization direction with respect to the [110] crystallo-
graphic direction of GaAs, and n is the band index. The
functional parameters w, and 7,

ey by @) = u2(@) + (@2 + w2 (@2 + -+,
My iy @) = 1V(0) + 7 (@) + P (@)K + - -+,
)

are even in the momenta and, what is crucial and new here,
depend in general on the magnetization direction. The out-
of-plane SOFs vanish due to time reversal and structural
C,, symmetry.

The values of the expansion parameters ,u,ﬁ,i), 1;55)
(i=0,1,2,...) determine the specific form of the SOF.
For example, if ,u,fqo) = a, and 775,0) = —a, (,u,ff)) = 775,0) =
B,), H , reduces in the limit of small k = |k| to the well-
known Bychkov-Rashba [4] (linearized Dresselhaus [3])
SOC with «, (B,) denoting the Bychkov-Rashba
(Dresselhaus) SOC parameter of the nth band. By

introducing the SOF,

nn(kx’ ky, QD)ky
wn(er ky! QD) = Mn(kx’ ky’ QD)kx ’ (3)
0

Eq. (1) can be rewritten as H , = w,(k) - o, where o is
the vector of the Pauli matrices.

We focus on the analysis of the effective SOFs for in-
plane magnetization directions. A detailed discussion for
the case of magnetization perpendicular to the interface
plane is provided in the Supplemental Material [41].
Unlike the intrinsic spin-orbit coupling coming from the
fine structure of the atomic orbitals forming a solid, which
can be of the order of 1 eV, the magnitudes of the spin
splittings due to SOFs are small, typically 1-100 meV.
In view of the exchange fields which are some eVs, the
SOFs can be considered a perturbation; the electrons spins
are quantized along with magnetization. Within first order
perturbation theory, using symmetry, we find (see the
Supplemental Material for the details [41]) the following
relations,
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and
where
AES(K, @) — E,(k, ¢) —2En(—k, 90), ©)
ok, o) — E,(=ky ky, ¢) — E,(k,, —k,, qo)y o

2

and o refers to the spin character of the nth band, which is
well defined away from anticrossings. The above relations
allow us to extract the components of the SOF directly
from the ab initio energy bands. In the particular cases of
¢ = 7/2 and ¢ = 0 the numerators and denominators in
Egs. (4) and (5), respectively, vanish. In such cases the SOF
is obtained by L"Hopital’s rule. The validity of Egs. (4) and
(5) is not restricted to the vicinity of the I" point but holds
also for large momenta. The only restriction is that the
k-space region of interest must be away from energy
anticrossings.

Figure 2 establishes the proof of principle for the
magnetization dependence of SOFs. It shows the SOF,
w(k) (bottom parts), and polar plots of its strength
w = |w(k)| (upper parts), for the interface band n = 1.
The SOF is computed on three different contours around
the I' point, k = 77/100d, 7/8d, and 7r/5d and is plotted in
Figs. 2(a)-2(c), respectively. The left-hand (right-hand)
panel corresponds to the magnetization pointing along
[110] ([110]). The C,, symmetry of the SOF is preserved
for all k. In particular, close to the I' point the SOFs
resemble the interference of Bychkov-Rashba-type and
Dresselhaus-type SOCs [see Fig. 2(a)]. However, away
from the I" point higher in & terms become relevant and
more exotic patterns—we call them spin-orbit-field
butterflies—in the SOF appear [see Figs. 2(b) and 2(c)].
The linear terms are dominant up to about 5% from the BZ
center, where the SOF exhibits a very strong dependence
on the magnetization orientation. Note that the principal
symmetry axes of the SOF can even be flipped by turning
the magnetization orientation. This remarkable effect
opens the perspective of a magnetic control of spin-orbit
fields.

Close to the I' point the SOF is determined by the
contributions linear in the wave vector components k,
and k, and characterized by Bychkov-Rashba-type and

Dresselhaus-type SOC parameters, a, = [u\" — n{0]/2
and B8, = [[LLE’!O) + 77510) 1/2, respectively. Using Egs. (2)—(6)
we obtain (see Supplemental Material for more
details [41])
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FIG. 2 (color online). Spin-orbit-field “butterflies.”” Calculated
spin-orbit fields for the magnetization along [110] (left) and
[110] (right). The polar plots of the spin-orbit coupling strength
(w/k) in the units of eVA as well as the corresponding vector
fields w(k) are shown for the band n = 1 and the momentum
contours of (a) k= w/100d, (b) k = 7/8d, (¢) k= 7/5d.
The lengths of the direction vectors have been rescaled.

o (p) = U[an(qo) cosss;l(—zi;(so) Sinso: 8)
and

8 (o) — U[an(@ cozpﬂéﬁ(@ sinso:’ ©)
where  a,(¢) = IE,(k, ¢)/dk =y and  b,(p) =

dE,(k, ¢)/ k0. Thus, the dependence of a,(¢) and
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FIG. 3 (color online). Calculated magnetization and electric
field dependence of the spin-orbit coupling parameters. The
Bychkov-Rashba-type «, and the Dresselhaus-type 3, spin-
orbit parameters for the interface bands n = 1, 2 are shown as
a function of the in-plane magnetization orientation and for
different electric fields.

B,.(¢) on the magnetization orientation can be obtained by
computing the k-space gradient (velocity) of the ab initio
energy bands in the vicinity of the I" point. The functional
forms of a,(¢) and b,(¢) conform to the symmetry
requirements (see Supplemental Material [41]).

Figure 3 shows the magnetization dependence of the
Bychkov-Rashba-type and Dresselhaus-type SOC parame-
ters for the interface bands. The SOC parameters exhibit an
oscillatory behavior as a function of the magnetization
orientation. The angular dependence of the SOC parame-
ters is stronger for band n = 1 than for n = 2. In particular,
for the case of band n = 1 the Bychkov-Rashba-type SOC
parameter can even change its sign when the magnetization
is rotated in the plane. This leads to the sign change of the
product «;f; when the magnetization is rotated from
[110] to [110] and produces the flipping of the SOF sym-
metry axes shown in Fig. 2(a). For band n = 2 the angular
dependence is weaker, the product &, 3, does not change
its sign, and the symmetry axis of the SOF is preserved,
being independent of the magnetization orientation.

When considering the dependence on the transverse
electric field, the behavior is the opposite. Indeed, while
the SOC parameters corresponding to band n = 1 change
very little with E, for band n = 2 the changes in the
magnitudes of a, and B, are appreciable. This disparate
behavior is a consequence of the different nature of these
two bands. Band n = 1 originates mostly from the two Fe
atoms in the interface unit cell and, therefore, its corre-
sponding SOF is more sensitive to the changes in the
magnetization direction. However, the electrostatic control
of the SOC parameters is dominated by the electric field
influence on the pd bonding between As and Fe atoms.

TABLE I. Band-resolved expansion coefficients of the
Bychkov-Rashba-type and Dresselhaus-type spin-orbit coupling
parameters in meV A units. The parameters are in the range of
what is found in semiconductors [2].

p A P A P

1 —0.42 —6.26 —11.32 4.32
2 —42.51 1.82 —57.94 —1.51
3 —620.24 —88.74 —597.56 —89.62
4 680.09 95.61 697.58 103.15

Consequently, the SOF corresponding to band n = 2,
which comes mostly from the interfacial As atom, its
neighboring Ga, and the Fe atom above Ga, exhibits a
stronger dependence on the electric field.

In Table I we list the expansion coefficients of the SOC
parameters (see Egs. (23) and (24) in the Supplemental
Material [41]),

a, =AY + B cos(29), (10)
B, =AY + B cos(20), (11)

for zero electric field. From Aff/ =) one extracts the

magnetization-independent part, whereas the Bﬁfr/ -
parameters control the leading contribution (higher order
coefficients are about 2 orders smaller) to the angular
(magnetization orientation) dependence of the spin-orbit
parameters. In addition to the interface bands (n = 1, 2),
we have also included the expansion coefficients corre-
sponding to the As-surface bands (n = 3, 4), which, due to
their surface nature, possess stronger SOFs.

To conclude, we introduced a method to obtain spin-
orbit fields from first-principles or experimental band
structures, going beyond the usually studied linear
Rashba regime and providing a tool for realistic phenome-
nological modeling of spin-orbit effects. Although we used
an important example of Fe/GaAs, our method is appli-
cable to a broad class of ferromagnetic materials structures.
Moreover, we found that the spin-orbit fields (and not only
the band structure) depend strongly on the magnetization
orientation. This shows that in order to realistically model
spin-orbit effects in ferromagnetic heterostructures, say,
with a tight-binding technique (which would also capture
anticrossings not covered in our single-band method), one
needs to consider the magnetoanisotropy of phenomeno-
logical fitting parameters. The magnetic control of SOFs
may have important consequences for our understanding of
and for predicting new spin-orbit phenomena in solids. In
particular, lateral transport through a few monolayers of a
ferromagnetic metal on a semiconductor could be strongly
influenced by the interfacial spin-orbit fields of the kind
reported here. One could also envisage spintronic device
concepts based on spin-orbit fields and their magnetic
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control, in analogy to their existing counterparts controlled
electrically.
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