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We study the anomalous Hall effect due to noncoplanar magnetism on a pyrochlore structure. We focus

on the frustration-induced spatial inhomogeneity of different magnetic low-temperature regimes, between

which one can efficiently tune using an external magnetic field. We incorporate nonmagnetic scattering on

a phenomenological level so that we can distinguish between the effects of short-range correlations and

short-range coherence. We obtain a Hall conductivity (�H) as a function of field strength and direction

which compares well to the experimental data of Pr2Ir2O7. In particular, we show that the observed peak

in �H for H k ½111� signals the crossover from zero-field spin ice to kagome ice.
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The properties of itinerant degrees of freedom on geo-
metrically frustrated lattices are only poorly understood.
One promising avenue for studying the interplay of frus-
tration and itinerance is hybrid systems where itinerant
electrons interact with localized magnetic moments subject
to strong frustration. The latter can exhibit various exotic
phases, incorporating peculiar spatial correlations [1]. It is
therefore natural to ask whether these bequeath their
unusual behavior to the itinerant electrons, resulting in
novel types of behavior for the composite system.

The anomalous Hall effect (AHE) is one particularly
striking resulting phenomenon [2]. The AHE was origi-
nally associated with ferromagnetic conductors with strong
spin-orbit interaction [3–5]. However, the AHE has
recently been reinterpreted in a broader context, including
noncoplanar magnets as promising candidates for its
emergence [6–9].

Prominently, the compound Pr2Ir2O7 shows a unique
Hall response. It is composed of two interpenetrating py-
rochlore lattices. Ir 5d electrons form a conduction band on
one, while the localized Pr 4f moments reside on the other
and develop spin-ice-type correlation at low temperature
[10,11]. It is quite plausible that the spin scalar chirality of
the spin-ice manifold gives rise to nontrivial features in the
Hall response, particularly strikingly in zero field [12]. In
addition, the observed Hall conductivity is highly aniso-
tropic and nonmonotonic, with a prominent peak around
H � 0:7 T forH k ½111� [9,12,13]. Pioneering analyses of
the pyrochlore conductors [14,15] have considered spa-
tially periodic structures for the localized moments. It is
now natural to ask how spatial aperiodicity—arising from
the geometrical frustration of the spin-ice local moments—
manifests itself in the nontrivial Hall response observed in
this compound.

For this purpose, we adopt a model in which itinerant
electrons interact with h111i-type localized Ising moments
on a pyrochlore lattice. To clarify the relation between the
Hall response and spin-ice correlations, we assume the

Ising moments to obey the nearest-neighbor spin-ice
model, rather than the RKKY interaction mediated by
electrons [16]. This phenomenological model turns out to
describe the experimental data of Pr2Ir2O7 quite well. In
particular, we find that the prominent peak observed for
H k ½111� can be attributed to the crossover from the zero-
field spin-ice state to kagome ice: the latter is a state with
perfectly field-aligned spins on the triangular layer with the
other spins disordered but subject to the ice rule constraint
[17]; see the Supplemental Material [18].
In the remainder of this work, we first define and analyze

a simple kagome-ice conduction model, which allows
systematic understanding of the Hall conductivity of spa-
tially inhomogeneous systems. In particular, we can estab-
lish the validity of third-order perturbation theory for the
weak-coupling region. This is then built into the phenome-
nological model to make detailed contact with the Pr2Ir2O7

data.
The kagome-ice conduction model is defined as itinerant

electrons under the local fields hi at each site of the
kagome lattice [Figs. 1(a) and 1(b)], where fhig are
imposed by the localized Ising moments fSig obeying the
kagome-ice rule as introduced below. The Hamiltonian is
given by

H ¼ �t
X

hi;i0i;�
ðcyi�ci0� þ H:c:Þ � X

i;�;�

cyi����ci� � hi:

(1)

The sum hi; i0i is taken over the nearest-neighbor sites.
We simply choose hi ¼ JSi, with exchange coupling J.
The localized spins fSig are subject to local easy-axis

anisotropy, i.e., Si ¼ �iDi (�i ¼ �1), with Di ¼
ð1= ffiffiffi

3
p Þ½1;�1; 1�, ð1= ffiffiffi

3
p Þ½1; 1;�1�, and ð1= ffiffiffi

3
p Þ½�1; 1; 1�,

if i belongs to sublattices A, B, and C. Here, we take a
quenched average in terms of fSig by imposing the
‘‘kagome-ice rule’’; namely, we impose for each triangleP

i24�i ¼ 1.

PRL 111, 036602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JULY 2013

0031-9007=13=111(3)=036602(5) 036602-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.036602


This allows a macroscopic number of spin configura-
tions [19,20], including a uniform configuration [Fig. 1(a)],
and a huge number of disordered configurations [Fig. 1(b)].
Crucially, for each and all of these, the spin scalar chirality

is uniform Sa � ðSb � ScÞ ¼ K0 � �4=3
ffiffiffi
3

p
for all the

upward and downward triangles [21]. We can thus examine
the effect of spatial disorder on the AHE, while preserving
uniform spin scalar chirality.

For the calculation of Hall conductivity �xy, we ran-

domly generate a series of spin configurations under the

kagome-ice rule fSðpÞ
i g. For each fSðpÞ

i g, the Hall conduc-
tivity is given as

�xyðfSðpÞ
i gÞ ¼ e2

@V

X

m;m0
½fðEmÞ � fðEm0 Þ�

� ImðhmjJxjm0ihm0jJyjmiÞ
ðEm � Em0 Þ2 þ 1=�2

; (2)

by the Kubo formula [22]. Here, jmi and Em are the
eigenenergy and corresponding eigenstate of Hamiltonian
Eq. (1). fðEÞ is the Fermi distribution function at zero
temperature. JxðyÞ is the xðyÞ component of the current

operator, and V is the total volume of the system. Here,
we introduce the phenomenological damping rate 1=� to
take account of the finite lifetime of electrons due to non-
magnetic impurities. While the magnetic disorder itself

causes damping, nonmagnetic scattering plays another
important role in Hall conductivity. 1=� sets a coherence
length of electrons, which determines the effective spatial
scale of spin scalar chirality. The Hall conductivity �xy

can be obtained after taking the configurational average,

as �xy ¼ ð1=NsÞ
PNs

p¼1 �xyðfSðpÞ
i gÞ. We typically choose

Ns ¼ 100 and system size N ¼ 32� 32� 3 ¼ 3072 sites.
Hereafter, we set t ¼ @ ¼ e2=h ¼ 1.
In Figs. 2(a) and 2(b), we show the dependence of�xy on

particle density n in the uniform [Fig. 1(a)] and disordered
configurations [Fig. 1(b)], at 1=� ¼ 1:0. In the uniform
case, �xy shows a steep change around n� 1=3 due to

the singularity in Berry curvature: At J ¼ 0, the band
structure is described by a tight-binding model on a
kagome lattice, which has Dirac cones at 1=3 filling.
The J and 1=� dependence of �xy is summarized in

Fig. 2(c) at n ¼ 0:0977. First, for small J, a cubic law
�xy / J3 is found in both uniform and disordered cases.

This cubic law can perturbatively be ascribed to the mul-
tiple scattering from triplets of spins exhibiting finite scalar
chirality [23]. With increasing J, deviation from the cubic
law is found at J � 1=�. In particular, in the uniform case,
�xy becomes insensitive to 1=�, and another scaling law

�xy / J appears, suggesting the �xy is described in terms

of the Berry curvature in this region [24]. For J � t, the
system falls into a double-exchange regime: the itinerant
electron spins are aligned with the localized spins, and �xy

takes on values only weakly dependent on 1=�.
In general, �xy takes considerably different values

between the disordered case (�d
xy) and the uniform ordered

one �u
xy, as shown in Fig. 2(d), where we plot the 1=�

dependence of �xy at J ¼ 0:05. This is most pronounced

for small damping 1=� 	 J, where �u
xy saturates, but the

difference persists all the way to 1=� � J.
A perturbative treatment in h sheds light on the origin of

difference between the two cases. To third order [25],

�xy ¼
X

ði1;i2;i3Þ
hi1 � ðhi2 � hi3ÞWxyði1; i2; i3Þ; (3)

where the summation is taken over the NðN � 1Þ�
ðN � 2Þ=6 triplets of sites (i1, i2, i3); see the
Supplemental Material [18]. This gives the Hall conduc-
tivity as summation over the triplets’ spin scalar chirality
with weighting factor Wxyði1; i2; i3Þ. It is instructive to

resolve the Hall conductivity (3) in the form of a graphical

series expansion as �xy ¼ P1
m¼3 �

ðmÞ
xy . Here, �

ðmÞ
xy is the

total contribution from the triplets (i1, i2, i3) belonging to
the set of graphsG½m� composed of three segments of total
length m. [An example of a triplet 2 G½7� is shown in
Fig. 1(b).]

Figures 2(e) and 2(f) show the partial summation SðmÞ
xy �

P
m
l¼3 �

ðlÞ
xy and the averaged weighting factor at each m,

WðmÞ
xy , at J ¼ 0:1 and 1=� ¼ 0:5. In the disordered case,

FIG. 1 (color online). (a) A uniform configuration and (b) a
representative of the disordered configurations satisfying the
kagome-ice rule. Blue (red) arrows show spins Si corresponding
to �i ¼ 1ð�1Þ. An example of the graph belonging to G½7� (see
the main text) is shown in (b) with three combined dashed
arrows. (c) Structure of double-pyrochlore lattice. Tetrahedra
with (without) arrows constitute Pr (Ir) pyrochlore lattice.
Sublattice indices A, B, C, and D are shown for the Pr lattice,
for which an example of a spin-ice configuration is shown.
(d) One Ir tetrahedron surrounded by four Pr tetrahedra. Each
Ir ion (i) has six neighboring Pr ions (ji1; . . . ; ji6) forming a
hexagon, as highlighted by a thick line.
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different contributions for graphs of a given m 
 5 come
with an effectively random sign, hence canceling against
one another. By contrast, for the uniform case, the summa-
tion continues to oscillate until damping destroys coher-
ence at larger m. This illustrates the different roles played
by loss of correlations of the local moments and loss of
coherence of the itinerant electrons in the two respective
cases.

Keeping in mind the insights obtained from the kagome-
ice conduction model, let us turn to Pr2Ir2O7. We consider
a double-pyrochlore lattice: two interpenetrating pyro-
chlore lattices, as shown in Fig. 1(c), with itinerant
electrons (ci�) on the Ir sublattice and localized

Pr moments (fS½j�g) on the other. The localized moments

are subject to Ising anisotropy as S½j� � �jDj, with Dj ¼
ð1= ffiffiffi

3
p Þ½1; 1; 1�, ð1= ffiffiffi

3
p Þ½1;�1;�1�, ð1= ffiffiffi

3
p Þ½�1; 1;�1�,

and ð1= ffiffiffi
3

p Þ½�1;�1; 1�, if j belongs to sublattices A, B,
C, and D, respectively. Each site i on the Ir sublattice has
six neighbors (ji1; ji2; . . . ; ji6) located on the honeycomb
ring of the Pr sublattice, as shown in Fig. 1(d). To describe
the interaction, we adopt the Hamiltonian Eq. (1), with the
local field given by the sum of the six neighboring local-
ized moments hi ¼ J

P
6
l¼1 S½jil�. We apply the third-order

perturbative scheme to this model. Since the exchange
coupling J stems from the superexchange process between
Pr and Ir ions, it is reasonable to assume that J=t 	 1.
To connect the Hall conductivity and observed spin-ice

correlation in Pr2Ir2O7, we phenomenologically assume
that the moments S½j� obey the nearest-neighbor spin-ice
Hamiltonian Eq. (4), rather than determine them by solving
Eq. (1) self-consistently:

H spin ¼ Jspin
X

hj;j0i
�j�j0 �H �X

j

S½j� ðJspin > 0Þ: (4)

We use H spin in a standard equilibrium Monte Carlo

sampling to obtain Ns ¼ 100 sets of fS½j�g and input
them into Eq. (1) through hi. Although we are interested
in the region T ! 0, we introduce temperature T as a
phenomenological parameter to mimic the deviation from
ideal spin ice due to the long-range RKKY interaction in
the actual compound and set T=Jspin ¼ 0:5.

Hereafter, we focus on the field directionsH k ½100� and
[111] [26]. We set magnetic coordinates ex k ½010� and
ey k ½001� for H k ½100�, and ex k ½�110� and ey k ½�1 �1 2�
for H k ½111�, and calculate �H � �xy. We consider the

low density region [9] and fix the particle density at
n ¼ 0:01. As a system size, we adopt N ¼ 12� 12�
12� 4 ¼ 6912 sites.
In Figs. 3(a) and 3(b), we plot the magnetic field depen-

dence of �H at 1=� ¼ 5:0 and 0.5. For extremely large
damping 1=� ¼ 5:0, only the smallest triangles contribute
to �H [Fig. 3(d)]. In this region, the sign of �H becomes
opposite betweenH k ½100� andH k ½111�, as expected in
Ref. [9] on the assumption of the local limit. However, the
full magnetic field dependence of �H, especially the low-
field negative linear response in this local limit considerably
deviates from the experimental results [9] [Fig. 3(a), inset].
The negative linear response comes from the large negative
contribution at m ¼ 3 [Fig. 3(d)]: solely short-range spin-
ice correlations within the four-Pr cluster [Fig. 1(d)] do not
give correct �H.
In contrast, for intermediate damping 1=� ¼ 0:5, �H

shows quite similar behavior to the experimental data [9].
For small H, �H shows positive linear response irrespec-
tive of the field direction [Fig. 3(b), inset]. In Fig. 3(e), we
plot the graph-resolved Hall conductivity at H ¼ 0:4 for
H k ½111�. This plot shows that the spatially extended
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FIG. 2 (color online). Dependence of �xy on particle density n
for (a) the uniform configuration and (b) the disordered configu-
ration at 1=� ¼ 1:00. (c) J dependence of �xy at n ¼ 0:0977 for

the disordered case (dots) and the uniform case (solid lines):
1=� ¼ 0:005, 0.050, and 0.500 from top to bottom. (d) The 1=�
dependence of �xy at n ¼ 0:0977 and J ¼ 0:05. The dashed line

is a guide to eye. (e) Partial summation of Hall conductivity SðmÞ
xy .

(f) The weighting factorWðmÞ
xy averaged over the graphs at eachm.
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scalar chirality beyond the local limit (m & 10, or roughly
35 Å) plays a crucial role in the positive linear response.

The low-field peak for H k ½111� is the most conspicu-
ous feature of the Hall conductivity in Pr2Ir2O7. In pre-
vious studies [9,15], this peak is attributed to the spin flip
crossover from the low-field spin-ice state with a dominant
two-in-two-out configuration to the high-field saturated
state with three-in-one-out and one-in-three-out spin con-
figurations. However, our analysis suggests a different
picture. In Fig. 3(c), we plot the probabilities that each
tetrahedron is occupied by two-in-two-out configuration
(P22), and three-in-one-out or one-in-three-out configura-
tions (P31). This plot shows that P22 and P31 are almost
constant at low fields, until the spin flip crossover happens
at much higher field H � 6Jspin [17] [Fig. 3(c), inset].

The peak of �H seems rather related to the crossover
from the zero-field spin-ice state to the kagome-ice state.
In Fig. 3(c), we plot the probability that a spin on the
sublattice A aligns parallel to the field (PA), as an indicator
of the kagome-ice state. PA changes from 0.5 at H ¼ 0 to
1.0 at the kagome-ice state. The peak of �H corresponds to
PA � 0:75, i.e., the midpoint of this saturation process,
clearly showing that the peak signals the crossover to a
kagome-ice state. Within the nearest-neighbor spin-ice

model used here, the crossover occurs at H � T.
Accordingly, the peak is located at H � 0:5T; see the
Supplemental Material [18]. Indeed, the [111] magnetiza-
tion takes �ð1=3ÞMsat experimentally, when �H has a
peak, with Msat � 1:5�B= Pr , the saturated magnetization
[9]. This magnetization (�ð1=3ÞMsat) coincides with the
value at the midpoint of the saturation process of MA, and
smaller than Ms � ð5=6ÞMsat expected at the spin flip
crossover.
Here, let us turn to the physical origin of the peak. As the

magnetic field is applied, net spin scalar chirality, and
hence �H, is enhanced. On the other hand, the evolution
to the kagome-ice state can be regarded as a partial order-
ing process of sublattice A, so that spatial disorder is
reduced, suppressing the interference between the graphs,
resulting in a suppression of �H, as discussed above for the
kagome-ice model. It is tempting to note that the balance
between the two effects gives rise to a prominent peak
during the evolution to the kagome-ice state. Indeed, the
peak becomes more prominent as 1=� is further reduced
(not shown), reinforcing the subtle balance between the
two competing effects. The sensitivity to 1=� may be
confirmed from the systematic study of the sample depen-
dence of �H and resistivity. Further analyses are clearly
desirable to elucidate this point.
We finally comment on the quantitative aspect of our

theory. Although our result is based on a single-orbital
tight-binding model, the overall features of �H are insen-
sitive to band structure. However, the amplitude of the Hall
conductivity is sensitive to the ‘‘details’’ of the band struc-
ture. By adopting a realistic band structure based on a
multiorbital tight-binding model with three t2g orbitals,

we could obtain the Hall conductivity �30 ��1 cm�1 at
high fields, comparable to experimental data [Fig. 3(f)],
with reproducing various features of experimental results;
see the Supplemental Material [18].
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Note added.—Related work has recently been done in

Ref. [27], which focuses on an effective chirality coupling
in Pr2Ir2O7.
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