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To understand how nonlocal Coulomb interactions affect the phase diagram of correlated electron

materials, we report on a method to approximate a correlated lattice model with nonlocal interactions

by an effective Hubbard model with on-site interactions U� only. The effective model is defined by the

Peierls-Feynman-Bogoliubov variational principle. We find that the local part of the interaction U is

reduced according to U� ¼ U� �V, where �V is a weighted average of nonlocal interactions. For graphene,

silicene, and benzene we show that the nonlocal Coulomb interaction can decrease the effective local

interaction by more than a factor of 2 in a wide doping range.
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Low dimensional sp-electron systems like graphene
[1–3], systems of adatoms on semiconductor surfaces
such as Sið111Þ:X with X ¼ C, Si, Sn, Pb [4], Bechgaard
salts or aromatic molecules [5,6], and polymers [7,8] fea-
ture simultaneously strong local and nonlocal Coulomb
interactions. In graphene, for instance, the on-site interac-
tions U=t� 3:3, the nearest neighbor Coulomb repulsion
V=t� 2, as well as further sizable nonlocal Coulomb terms
exceed the nearest neighbor hopping t ¼ 2:8 eV [1].
Considering on-site interactions U=t� 3:3 alone would
put graphene close to the boundary of a gapped spin liquid
[9], which could be even crossed by applying strain on the
order of a few percent [1]. It is currently unclear whether
[10] or not [11,12] nonlocal Coulomb interactions stabilize
the semimetallic Dirac phase in graphene. To rephrase the
problem, it is unclear which Hubbard model with strictly
local interactions would yield the best approximation to
the ground state of graphene. To judge the stability of the
Dirac electron phase in graphene but also to understand
Mott transitions on surfaces like Si:X (111), a quantitative
well defined link from models with local and nonlocal
Coulomb interactions to those with purely local interac-
tions is desirable.

In this Letter, we present a method to map a generalized
Hubbard model with nonlocal Coulomb interactions onto
an effective Hubbard model with on-site interactions U�
only. For graphene, silicene, and benzene we show that
nonlocal terms reduce the effective on-site interaction by
more than a factor of 2 in a wide doping range around half
filling. Thus, nonlocal Coulomb interactions are found to
stabilize the Dirac electron phases in graphene and silicene
against spin-liquid and antiferromagnetic phases. In the
almost empty and nearly filled case we find, however,
that even strictly repulsive nonlocal Coulomb interactions
can effectively increase the local interactions.

The starting point is the extended Hubbard model

H ¼ �X
i;j;�

tijc
y
i�cj� þU

X
i

ni"ni# þ 1

2

X
i�j
�;�0

Vijni�nj�0 ; (1)

where tij are the hopping matrix elements. U and Vij are

the local and nonlocal Coulomb matrix elements, respec-
tively. The goal is to map the Hamiltonian (1) onto the
effective model

H� ¼ �X
i;j;�

tijc
y
i�cj� þU�X

i

ni"ni#: (2)

The effective on-site interaction U� shall be chosen such

that the canonical density operator �� ¼ 1=Z�e��H�
of the

auxiliary system, where Z� ¼ Trfe��H� g is the partition
function, approximates the exact density operator � de-
rived from H as close as possible. This requirement leads
to the Peierls-Feynman-Bogoliubov variational principle
[13–15] for the functional

~�½��� ¼ �� þ hH �H�i�; (3)

where �� ¼ �ð1=�Þ lnZ� is the free energy of the auxil-
iary system. h� � �i� ¼ Tr��ð� � �Þ denotes thermodynamic
expectation values with respect to the auxiliary system. In

the case of �� ¼ � the functional ~�½��� becomes minimal
and coincides with the free energy. The optimal U� is thus
obtained for minimal ~�½��� ¼ ~�½U��:

@U� ~�½U�� ¼ 0: (4)

By evaluating Eq. (4) one finds

U� ¼ Uþ 1

2

X
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@U� hni�nj�0 i�P
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PRL 111, 036601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JULY 2013

0031-9007=13=111(3)=036601(5) 036601-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.036601


This rule presents a central result of this Letter and has
an intuitive physical interpretation (see Fig. 1): increasing
the on-site term U� reduces the double occupancy hni"ni#i�
and pushes away electrons approaching an already occu-
pied site i ¼ 0 to neighboring sites. In the case of purely
local Coulomb interactions there is a Coulomb energy
gain of U� upon suppressing the double occupancy.
When there are, however, nonlocal Coulomb interactions
with surrounding lattice sites j, the displaced electrons
raise the energy of the system by terms proportional to
V0j. For a system at half filling with one doubly occupied

site this process is illustrated in Fig. 1(a). In this case,
it is obvious that the Coulomb energy gains due to the
electron displacement in the original and the auxiliary
model become energetically equivalent for U� ¼ U� V.
We will show that this picture applies well for graphene,
silicene, and benzene in a wide doping range.

For a translationally invariant system, the local part of the
interaction U is reduced according to U� ¼ U� �V, where

�V ¼ �X
j�0
�0

V0j

@U� hn0"nj�0 i�
@U� hn0"n0#i� : (6)

The conservation of the total electron numberN leads to the
sum rules

P
j�hn0"nj�i� ¼ N=2 and @U� hn0"n0#i� ¼

�P
j�0;�@U� hn0"nj�i�. Thus, �V is a weighted average of

the nonlocal Coulomb interactions. Under the assumption

that an increasing U� displaces electrons only to next
neighbors, we find @U� hn0"n0#i� ¼ �Nn@U�

P
�hn0"n1�0 i�,

where Nn is the coordination number. Equation (5) then
yields

U� ¼ U� V01: (7)

This gives an estimate for the effectiveCoulomb interaction
without the need of numerical calculations but it follows
from a severe approximation. The following numerical
calculations show, however, that in a wide doping range
around half filling Eq. (7) leads to values close to the exact
ones (shown in Table I). Then, the nonlocal Coulomb
interaction reduces the effective on-site interaction and
therefore stabilizes the Fermi sea against transitions, e.g.,
to aMott insulator. Nevertheless, situations with negative �V
can be constructed, as will be demonstrated for systems
with nearly empty or almost filled bands further below.
When the approximation that electrons are only

displaced to next neighbors is dropped, the derivatives of
the correlation functions have to be calculated explicitly.
This can be done approximately within the dynamical
mean field theory [17] and diagrammatic extensions like
the dual-fermion approach [18]. In certain cases also
numerically exact calculations of the nonlocal charge
correlation functions for instance by means of exact
diagonalization (ED), determinant quantum Monte Carlo
(DQMC [19]) calculations, or density-matrix renormaliza-
tion group methods (see, e.g., Ref. [20]) are possible.
In the following, we consider graphene, silicene, and

benzene by means of DQMC calculations and ED. We
used the DQMC implementation ‘‘QUantum Electron
Simulation Toolbox’’ (QUEST 1.3.0 [21]) on a super cell
to obtain the charge correlation functions that enter Eq. (5)
for graphene and silicene at half filling. Furthermore, a
different DQMC implementation [22] was used to verify
the results of the QUEST package. The Hubbard model with
less than 8–9 sites can also be solved by exact diagonaliza-
tion. In this case a comparison with data obtained with

FIG. 1 (color online). Illustration of the physical process
underlying Eq. (5). (a) Half-filled system: an electron hops
from a doubly occupied site to an empty one, gaining an energy
(U� V) in the original model and U� in the effective model.
(b) Nearly empty or almost full system: wave packets of spin up
and down electrons or holes [�ðxÞ ¼ jc ";#ðxÞj2] are separated to

the farthest possible position. If the packets are much wider than
the lattice spacing, the approximation for the initial energy
U
R
�ðxÞ2dxþ V

R
�ðxÞ�ðxþ 1Þdx � ðUþ VÞR�ðxÞ2dx holds

and the energy gained in the original model is �ðUþ VÞ and
�U in the effective model.

TABLE I. First three rows: Coulomb matrix elements obtained
with cRPA (graphene and silicene) and from Ref. [16]
for benzene (tgraphene ¼ 2:80 eV, tsilicene ¼ 1:14 eV, tbenzene ¼
2:54 eV). Last three rows: effective local Coulomb matrix
elements for half filling with and without the approximation
that electrons are only displaced to nearest neighbors and factor
by which the local Coulomb interaction is decreased.

Graphene Silicene Benzene

U=t 3.63 4.19 3.96

ðV01; V02Þ=t 2.03, 1.45 2.31, 1.72 2.83, 2.01

ðV03; V04Þ=t 1.32, 1.14 1.55, 1.42 1.80, �
U�=t 1:6� 0:2 2:0� 0:3 1.2

ðU� V01Þ=t 1.6 1.9 1.1

U�=U 0:45� 0:05 0:46� 0:05 0.3
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DQMC calculations shows excellent agreement (see
Supplemental Material [23]).

To calculate U� for realistic systems, we introduce
values for the Coulomb interactions in the original model
defined by Eq. (1). For graphene and silicene these values
are calculated with the constrained random phase approxi-
mation (cRPA) [24] as in Ref. [1]. For benzene, we use
values from Ref. [16], which are obtained by fittingU and t
to experimental spectra and calculating Vij by the Ohno

interpolation [25], which reads

Vijð"Þ ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�"rijÞ2

q (8)

with � ¼ U=e2. The nonlocal Coulomb interaction can
be tuned by an additional variable screening " ranging
from 0 to 1. " ¼ 1 corresponds to purely local interac-
tions and " ¼ 0 to ultimately nonlocal interactions with
matrix elements not decaying with distance between sites.
" ¼ 1 corresponds to the model of benzene proposed in
Ref. [16]. For all systems the values of the initial Coulomb
interactions are given in Table I.

For a honeycomb lattice at half filling the U� derivatives
of the correlation functions @U� hn0"nj�0 i� at U� ¼ 2t are

shown in Fig. 2(a) [26]. In this particular case,
@U� hn0"nj�0 i� changes sign with both sublattice and spin

indices. Generally, j@U� hn0"nj#i�j with opposite spins

exceeds the equal spin case j@U� hn0"nj"i�j. The derivatives
decrease clearly with the distance between the sites i ¼ 0
(thick drawn circles in the middle) and j. Thus, our
numerical calculations show that upon increasing U�
double occupancy is indeed reduced by displacing
electrons to close by neighboring sites, and support the
scenario suggested in Fig. 1(a).

The resulting values of the effective local Coulomb
interaction U� for graphene, silicene, and benzene are
summarized in Table I. The local Coulomb interaction is

decreased by a factor of larger than 2 in all cases. For both
graphene and silicene the renormalized on-site interactions
are far away from the transition to a gapped spin liquid at
U�=t ¼ 3:5 [9]. The Dirac semimetal phase is thus stabi-
lized by the nonlocal Coulomb interactions. We obtain the
strongest renormalization of the on-site interaction for
benzene. This is mostly due to the different ratio between
local and nonlocal Coulomb interactions in benzene,
V01=U ¼ 0:72, as compared to V01=U ¼ 0:56 for graphene
[27] or V01=U ¼ 0:55 for silicene.
It is interesting to see how the renormalization of the

local Coulomb interaction depends on the filling of the
system. Therefore, we study the model of benzene at an
arbitrary number of electrons N by means of ED. The
initial Coulomb matrix elements entering Eq. (1) are
assumed to be doping independent. The results for the
filling dependent U�=t in benzene for different strengths
of the nonlocal Coulomb interaction Vijð"Þ from Eq. (8) are

shown in Fig. 3. Clearly doping in the range of 4 � N � 8
has only little effect on U�. This doping range corresponds
to changing the number of electrons on the order of �1=3
per atom and thus covers fully the range of dopings which
can be achieved in graphene by means of gate voltages or
adsorbates.
Strong differences to the half-filled case arise however

for extreme doping (N ¼ 2, 10), i.e., close to the nearly
empty or almost completely filled case. The reduction of
the effective local interaction U� is considerably weaker
[see Fig. 3(a)]. For a stronger initial on-site interaction
(U ¼ 7:92t) U� even exceeds the initial on-site interaction
by a factor of up to U�=U � 1:3 [see Fig. 3(b)]. The
physical origin of the behavior is illustrated in Fig. 1(b).
In a dilute system, two electronic wave packages can
minimize their Coulomb energy by simply avoiding each
other in real space while staying delocalized over many
lattice spacings at the same time. For such delocalized
wave packages the effect of on-site and, e.g., nearest
neighbor Coulomb interactions becomes very similar and
the on-site interaction U� is increased by V.

−5.7 0 5.7−26.4 0 26.4

FIG. 2 (color online). (a) Derivatives of the correlation func-
tions hn0"nj�i with respect to U� at U� ¼ 2t for half-filled

graphene (16	 16 unit cells). Each circle corresponds to one
carbon atom. The thick drawn circles indicate the lattice site with
index i ¼ 0. (b) Correlation function @U� hn0"nj#i� for nearly

empty honeycomb lattice (two electrons in a 5	 5 super cell).
In addition, we find @U� hn0"nj"i� ¼ 0 as it must be for a singlet

ground state (not shown here).
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FIG. 3 (color online). Effective local Coulomb interaction
U�=t color coded for (a) benzene with U ¼ 3:96=t and
(b) benzene with U ¼ 7:92=t, for various screenings of Vijð"Þ
and all fillings. Due to particle hole symmetry of the model only
N � 6 is shown.
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This effect can be generally expected in nearly empty
and almost filled systems: Fig. 2(b) shows the U� deriva-
tives of charge correlation functions in a 5	 5 supercell of
a honeycomb lattice occupied by N ¼ 2 electrons in total.
Most importantly, @U� hn0"nj#i� shows pronounced differ-

ences to the half-filled case. In addition to a suppression of
double occupancy by increased U� (i.e., @U� hn0"n0#i� < 0
as in the half-filled case) @U� hn0"nj#i� is negative in the

vicinity of j ¼ 0, too. Increasing local interactions with
an electron at site j ¼ 0 expels other electrons also from
its vicinity. This corresponds to the process depicted in
Fig. 1(b) and leads to effective on-site interactions being
increased by nonlocal Coulomb terms. This can be under-
stood in terms of Wigner crystallization [28]. In the full
model the Coulomb energy wins over the kinetic energy for
low electron or hole densities. Thus the carriers tend to
localize. To approach a Wigner crystal also in the auxiliary
model, the effective local interaction is increased such that
interaction energy dominates over kinetic energy.

Finally, the question arises as to how accurately the
effective model reflects the physical properties of the
original model. The phase diagram of the extended
Hubbard model on the honeycomb lattice includes an
antiferromagnetic (AF), a semimetal (SM), and a charge
density wave (CDW) phase [29], while the Hubbard model
with strictly local interactions only features the first two
phases. Similarly, if the system is in a quantum Hall
regime, i.e., presence of strong magnetic fields, there are
some many-body phenomena like the formation of stripes
where the long-range tails of the Coulomb interaction are
crucially important. In situations with such charge inho-
mogeneities the auxiliary model can likely fail to provide a
physically correct description of the original system. If the
parameters of the extended model are, however, clearly
inside the AF or the SM phase, the effective model will
likely approximate the physical properties of the original
model quite well.

We illustrate this expectation with the example of modi-
fied benzene. In this model, the nonlocal Coulomb inter-
action Vij are calculated with the Ohno interpolation (8).

Comparisons of the spin hSijz i ¼ hðni" � ni#Þðnj" � nj#Þi
and the density correlation functions h�iji ¼ hðni" þ ni#Þ	
ðnj" þ nj#Þi for the extended and the auxiliary local

Hubbard model are shown in Fig. 4. The correlation func-
tions have been calculated by exact diagonalization for
both the original and the effective model. For " ¼ 0 and
" ! 1 (noninteracting and local limit, respectively) the
correlation functions of the effective and original model
coincide as they should. CDW physics would manifest
in h�iji and here we find indeed some differences of h�iji
for the effective and the auxiliary model for intermediate

screening (�� 1). However, nearly no deviation of hSijz i
between the extended and effective model is found. This
behavior is found for all fillings and also different initial
local interactions U (see Supplemental Material [23]).

We thus expect that transitions into phases like an AF
insulator (or a Mott insulator) will be very well described
by the effective model.
In conclusion, a systematic map from lattice models with

nonlocal Coulomb interactions to effective Hubbard models
with strictly local Coulomb interactions U� is derived.
The physical properties of the effective model reflect the
original system nicely, especially regarding spin related
properties. We find that the nonlocal Coulomb interactions
can significantly renormalize the effective on-site interac-
tion U� as compared to the original local U. In the cases of
graphene and silicene our calculations yield U�=U < 0:5
for half filling. Thus, the nonlocal Coulomb interactions
stabilize the Dirac semimetallic phases in these materials
against transitions to a gapped spin liquid or an antiferro-
magnetic insulator. In defective graphene or at edges local
Coulomb interactions can lead to the formation of magnetic
moments [3,30,31]. When describing these situations in
terms of the Hubbard model, the value of U� ¼ 1:6t
obtained here should be used. Whether or not a Hubbard
model is generally appropriate to describe the physical
properties of graphene is still a matter of debate and
depends on the observable of interest. Our results suggest
that a Hubbard model should be useful to judge the occur-
rence of edge magnetism and of AF insulator phases.
Furthermore, our work indicates that nonlocal Coulomb
interactions will, in general, significantly weaken local
correlation effects in sp-electron materials in a wide doping
range. Additionally we have shown that for extreme low
carrier densities (in the vicinity of the Wigner crystal
instability) nonlocal interactions can increase the effective
local interaction. Such systems should be realizable, e.g., in
any weakly doped semiconductor. It is interesting to see
how the renormalization of effective on-site interactions
generalizes to heterostructures with modified bands and
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FIG. 4 (color online). Correlation as functions of the screening
for the extended Hubbard model (continuous lines) and the effec-
tive Hubbard model (broken lines) for benzene. The left panel
shows spin correlation hSijz i and the right panel shows density
correlation h�ij

z i. hS01z i is virtually the same for the effective
and original model. The parameters for the original model are
U ¼ 10:06 eV and torig ¼ 2:539 eV, and Vð"Þ is calculated by

Eq. (8). U�ð"Þ is calculated by Eq. (5), while teff ¼ torig.
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additional van Hove singularities like twisted bilayer
graphene and gated (gapped) bilayers, or to quantum Hall
systems depending on Landau level filling factors.
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