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The world of two-dimensional crystals is of great significance for the design and study of structural and

functional materials with novel properties. Here we examine the mechanisms governing the formation and

dynamics of these crystalline or polycrystalline states and their elastic and plastic properties by

constructing a generic multimode phase field crystal model. Our results demonstrate that a system with

three competing length scales can order into all five Bravais lattices, and other more complex structures

including honeycomb, kagome, and other hybrid phases. In addition, nonequilibrium phase transitions are

examined to illustrate the complex phase behavior described by the model. This model provides a

systematic path to predict the influence of lattice symmetry on both the structure and dynamics of

crystalline and defected systems.
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Two-dimensional (2D) crystalline materials have been
of tremendous interest in both fundamental research and
technological applications due to their extraordinary
properties and functionalities that are absent in three-
dimensional materials. A typical and well-known example
is graphene, which exhibits exceptional electronic, me-
chanical, and thermal properties [1,2]. Recent efforts
have been extended to the search for and study of 2D
monolayer sheets of graphene type or beyond, such as
group IV elements of silicene [3] and germanane [4], BN
and BNC [5], and semiconducting MoS2 and MoSe2 [6].
On larger length scales much progress has been made in the
self-assembly of 2D crystals using particles of nano or
micron size that are easier to tailor for specific function-
alities and to observe. Colloidal crystals, for example, play
a vital role in the study of structural properties of crystal-
line systems and the development of engineered, functional
materials [7–9]. In addition, another novel technique for
artificial lattice ordering is built on the trapping of ultra-
cold atoms (e.g., 87Rb) in optical superlattices produced by
overlaying laser beams [10,11], as utilized for the study of
many-body quantum physics.

These 2D systems involve a wide variety of constituent
particles with very different types of microscopic interac-
tions, but exhibit similar crystalline symmetries such as
honeycomb (as for graphene [1], silicene [3], colloidal
crystal [7], and lattices of ultracold atoms [10]), kagome
(as realized for colloids [8] and ultracold 87Rb [11]), and
simple Bravais lattices such as triangular and square latti-
ces [7,11]. Thus it is of fundamental importance to identify
the universal mechanisms underlying these distinct modes
of crystallization, based on the general principle of sym-
metry [12]. It is also important to understand the nature of
topological defects which occur frequently in such systems
and are known to determine the electronic and mechanical

properties of the sample [2]. Unfortunately it is very diffi-
cult to model and predict the nature of such defected states,
due to the multiple length and time scales involved in the
nonequilibrium crystallization processes.
In this work we develop a dynamic model that can be

applied to the study of crystallization with a variety of
ordered and defected structures. We adopt the phase field
crystal (PFC) formalism [13–16], in the spirit of the
Alexander-McTague analysis of crystallization based on
the Landau theory [12]. The advantage of this PFC
approach is that one can study polycrystal formation in
terms of the atomic number density on diffusive time scales
that are many orders of magnitude larger than that of
classical microscopic models such as molecular dynamics.
One can also apply renormalization techniques [17–19] on
the PFC equation to study problems that involve both
micro and meso scales such as epitaxial growth [20] and
surface patterning in ultrathin films [21].
Recently a great deal of progress has been made on

generalizing the PFC formulation to include more crystal
symmetries [22–25], although in two dimensions current
PFC studies are restricted to triangular and square states.
The basic idea is to incorporate interparticle interactions
through a two-point direct correlation function that (i) hasN
peaks in Fourier space (corresponding to N different char-
acteristic length scales) and (ii) is isotropic. This allows one
to systematically interpolate between different crystalline
states without a priori assumptions about any orientation-
dependent interactions and thus allows the study of poly-
crystalline materials. Here we exploit this idea and show
that systems with three modes (i.e., N ¼ 3) exhibit a sur-
prisingly rich phase behavior of crystallization that covers
symmetries of all five 2D Bravais lattices. Our results add to
a growing list of structures that can be realized from the
freezing of monatomic fluids with isotropic multiwell
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interaction potentials [26–29], and more importantly, pro-
vide a systematic approach for examining both structural
and dynamic properties of 2D crystalline materials.

The multimode phase field crystal model we introduce
here is based on a dimensionless free energy functional

F ¼
Z
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as generalized from the two-mode form proposed before
[24,30], and a dynamic equation @c =@t ¼ r2�F =�c on
diffusive time scales, giving
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where c ð~r; tÞ is a rescaled particle number density field,
and r, �, bi, and � are phenomenological constants. The
parameters bi control the relative stability of different
modes, and are determined by the interparticle potential
of a specific system. This PFC free energy functional can
be approximately derived from a Landau-Brazovskii ex-
pansion of the free energy in the classical density func-
tional theory of freezing [14,18], and the gradient terms in
Eq. (1) can be obtained from expanding the Fourier com-
ponent of the pair correlation function in the classical
density functional theory, which satisfies the requirements
(i) and (ii) given above, up to its N peaks that are located at
wave numbers Qi (i ¼ 0; 1; . . . ; N � 1).

In a crystalline state c can be expanded in terms of its
Fourier components A~q and the reciprocal lattice vectors

(RLVs) ~q: c ð~rÞ ¼ c 0 þP
~qA ~qe

i ~q� ~r, where c 0 is the aver-

age rescaled density. In two dimensions, ~q ¼ n ~k1 þm ~k2
where m and n are integers, and ~k1 and ~k2 are the principal
RLVs. From Eq. (1) we can obtain a standard expansion
form

F =V ¼ X
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When G~q is small but negative, a crystalline state forms

and the summation over cubic and quartic terms can be
restricted to wave vectors with magnitude j ~qj ¼ Qi, with
higher order harmonics not needed. It was noted by
Alexander and McTague [12] that close to the melting
point the favored crystalline state is determined by the

largest contribution of the cubic term which, according to
Eq. (3), is given by a triplet of density waves with wave
vectors forming a closed loop, i.e., ~q1 þ ~q2 þ ~q3 ¼ 0.
Within the five 2D Bravais lattices the least symmetric

one is oblique, a chiral lattice, for which the triplet of the
density waves must consist of wave vectors with different
magnitudes forming a scalene triangular loop. Thus it is a
candidate of the preferred state for Eq. (3) when N ¼ 3.
The same argument holds for the rectangular lattice. The
square or rhombic lattice can be considered as special cases
of the rectangular or oblique lattice that is stabilized with
N ¼ 2 and with triads of wave vectors forming an isosceles
triangular loop. This N ¼ 2 limit was explored by Lifshitz
and Petrich [30], showing stable patterns of two-, four-,
six-, and 12-fold symmetries. The N ¼ 1 limit, with the
basic wave vectors forming an equilateral triangle, corre-
sponds to the favored 2D triangular phase as given in the
classical work of Alexander and McTague [12]. Thus three
modes (with different Qi, i ¼ 0, 1, 2) are enough for
constructing a minimal model to cover all five 2D
Bravais lattices. Furthermore, the selection and competi-
tion between these modes of different length scales will
lead to much richer crystalline phases, an effect that goes
beyond the classical Alexander-McTague type analysis. As
shown below, we can tune the excitation level of the
density waves of j ~qj ¼ Qi via parameters bi in our PFC
model to systematically explore the stability of different
phases that compete with a targeted crystalline state.
To verify our analysis we solved the PFC dynamic

equation (2) with N ¼ 3 via a pseudospectral algorithm
[31,32], using periodic boundary conditions in systems of
sizes ranging from 2562 to 10242. We restricted our pa-
rameter space to c 0 ¼ �0:2, r ¼ �0:15, � ¼ 0:02, and
� ¼ 0 for simplicity. To systematically determine the vari-
ous steady states we chose Qi such that the magnitudes of
the critical wave vectors correspond to the three shortest
wave numbers of a targeted lattice. For a 2D Bravais lattice
they are given by

j ~qj ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ�2n2 þ 2mn� cos�

q
; (5)

where � ¼ k2=k1 and � is the angle between ~k1 and ~k2.
Steady-state solutions were obtained by monitoring the

crystallization process until changes in the system free
energy density are negligible (e.g., �f < 0:01%). In
Fig. 1 we show a variety of ordered states obtained when

Qi¼0;1;2 ¼ 1,
ffiffiffi
3

p
, 2 (corresponding to the first three shortest

RLVs for the triangular lattice), at different regions of the
bi parameter space. They include three triangular (Tri0,
Tri1, Tri2), honeycomb (Hon), kagome (Kag), rectangular
(Rec), dimer (Dim), and intermediate (Int) phases. We
identified the observed regions of these different states by
rerunning the simulations (using different random initial
conditions) at each point of the parameter space for more
than 10 times and classifying the stable structure as the
equilibrium phase. The results are depicted in Fig. 2.
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These simulation results are consistent with the above
crystallization analysis. The stable triangular states are
characterized by a circularly averaged structure factor
SðqÞ with one dominant peak, as shown in Fig. 1. The
honeycomb phase corresponds to a superposition of two
sets of triplet density waves with j ~qj ¼ Q0 and Q1, respec-
tively. Each set can maximize the cubic free energy term
since the wave vectors can form a closed loop (equilateral
triangle). Similar arguments can be made for the kagome
phase, but with each set having wave vectors j ~qj ¼ Q0 and
Q2, respectively. This has been demonstrated in the experi-
ments of ultracold atoms [11], where two sets of three
optical waves with j ~qj ¼ Q0 and Q2 ¼ 2Q0 were super-
imposed to create a kagome lattice. To further examine the
formation condition of the honeycomb phase we analyze

the following transformation: Tri1 ! Hon ! Dim. The
Tri1 ! Hon transformation is characterized by a sudden
increase of the structure-factor peak at Q0, leading to two
prominent peaks in the honeycomb phase [see Fig. 3(a)].
A further increase in b1 creates an imbalance between
the two sets of critical modes, inducing a compressed-
honeycomb, i.e., dimer, state. Figure 3 shows the dynamics
of the Hon ! Dim transformation. A pair of density max-
ima merge to form elongated regions of higher densities
(i.e., dimers) during the transition.
As discussed above, three modes are needed to form a

rectangular phase, which is verified in our results of Fig. 1.
Our numerical results also reveal that one can interpolate
between the two Bravais lattice symmetries triangular and
rectangular by tuning the excitation levels of the dominant
density waves via bi. This is not surprising since from
Eq. (5) one can see that the magnitudes of the RLVs in a

triangular lattice Qi¼0;1;2 ¼ 1,
ffiffiffi
3

p
, 2 are the same as those

of a rectangular lattice with � ¼ ffiffiffi
3

p
. We have realized a

stable intermediate state between these two lattices
(see Fig. 1), which consists of rectangular domains
separated periodically by triangular edges. An analogous
phase has been observed in experiments involving the
commensurate phase ordering of colloid monolayers
(i.e., Archimedean-like tiling [9]).
We can also target the ordering into other 2D Bravais

lattices: square, rhombic, and oblique, by applying Eq. (5).
The ratio of the three shortest wave vectors in a square

lattice is given by Qi¼0;1;2 ¼ 1,
ffiffiffi
2

p
, 2, leading to two

possible sets of density wave triplets: two with j ~qj ¼ 1

and one with j ~qj ¼ ffiffiffi
2

p
, or two with j ~qj ¼ ffiffiffi

2
p

and one
with j ~qj ¼ 2. Both have been obtained in our simulations,
with an example shown in Fig. 4(a). We also observed
other stable states with the same Qi series, including three
triangular states and a phase that consists of pentagons and
hexagons [see Fig. 4(b)] with dominant structure-factor

FIG. 2 (color online). Phases determined from the PFC model
with Qi¼0;1;2 ¼ 1,

ffiffiffi
3

p
, 2, and b0 ¼ 0.

FIG. 1 (color online). Crystalline phases obtained via PFC
simulations for Qi¼0;1;2 ¼ 1,

ffiffiffi
3

p
, 2, including one of three

triangular phases (Tri0), kagome (Kag), honeycomb (Hon),
dimer (Dim), and rectangular (Rec) phases, and also an inter-
mediate phase (Int). Insets: the circularly averaged structure
factor SðqÞ vs q.

FIG. 3 (color online). Dynamic process of phase transforma-
tion. (a) Peak values of structure factor during a Tri1 ! Hon !
Dim transformation, for ðb0; b2Þ ¼ ð0; 0:1Þ. (b),(c) Dynamics of
a Hon ! Dim transformation from ðb0; b1; b2Þ ¼ ð0;�0:1; 0:04Þ
to (0, 0.2, 0.04).
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peaks located at j ~qj ¼ Q0 and Q1. A similar pentagon
phase was found in recent molecular dynamics simulations
using a double-well potential [27].

The square-type states can be also generated from the

seriesQi¼0;1;2 ¼ 1, 2,
ffiffiffi
5

p
, although with a multiatom basis.

Note that this Qi series corresponds to a closed loop of
right-angled-triangle wave vectors, and thus a rectangular
state, as seen in Fig. 4(c). However, such a phase can be
defined as a square lattice with a two-atom basis since this
Qi series also incorporates the ratio of the Bragg peak
positions of a square structure. Another stable multiatom
square state, a square-dimer phase, is shown in Fig. 4(d).

To reproduce a rhombic or oblique phase, we note that in
general the oblique state is favored by the cubic term of
free energy expansion when jbij � 1, where all the three
critical modes are excited, while the rhombic phase is
favored when two different modes are dominant. As shown
in our results of Figs. 4(e) and 4(f), the structure factor of
the oblique phase is characterized by three peaks and the
rhombic phase by two dominant peaks, as expected.

Another focus of our work is on exploring the dynamics
of different crystalline states that are generated by the
three-mode PFC model. Starting from an unstable, homo-
geneous liquid state, the typical crystallization process of a
large system involves the nucleation of crystal seeds, and
the formation and later the annihilation of topological
defects which leads to the growth and coarsening of crystal
grains. In Fig. 5 we show a variety of topological defects
observed during the ordering process. This includes linear
and point defects in the honeycomb phase, grain bounda-
ries in the oblique lattice, and complex defected states
associated with coexistence of different crystalline struc-
tures, and also disclinations in the dimer state.

The simplicity of our approach also makes it relatively
straightforward to calculate the elastic properties of these
crystalline states. As shown in Fig. 1, the structure factor
of the dimer phase has a dominant single peak and thus a
one-mode approximation [13,16,33] can be utilized. Note
also that the dimer structure results from the merging of
two density peaks in a honeycomb phase, as demonstrated
in Fig. 3. Hence here we can consider c ð~rÞ as a two-
particle (dimer) density, with each constituent dimer
molecule (basis) consisting of two atoms, one at the
origin and the other at (�d, 0), where 0< �< 1=2 and d
is the lattice constant of the corresponding triangular
lattice they occupy. Following the standard procedure
[16], we obtain the shear modulus of the system �s ¼
C44 ¼ 3�t½cosð2��Þ þ 1�=8 where �t¼ðb1þ4q4Þ�
ðb2þ9q4Þ�A2q4, A is the amplitude of the c expansion,

and q ¼ 4�=ð ffiffiffi
3

p
dÞ ¼ Q0, and the anisotropic Poisson

ratios parallel and perpendicular to the dimer molecular
axis are

	x ¼ C12

C22

¼ 3

�
cosð2��Þ þ 1

cosð2��Þ þ 17

�
and 	y ¼ C12

C11

¼ 1

3
:

(6)

When � ! 0 the dimer state changes to a triangular one
(Tri0). In this limit the Poisson ratio becomes isotropic as
obtained from Eq. (6), which is expected for an elastically
isotropic triangular lattice. Our calculations also show that
the shear modulus of the dimer state is smaller than that of
the triangular phase. This is a consequence of the addi-
tional degree of freedom in this state; i.e., the dimers can
rotate [33]. When � ! 1=2, the simple one-mode approxi-
mation used here breaks down and more harmonics
(modes) are required. This would correspond to the insta-
bility of the dimer phase towards the formation of the
honeycomb phase (which is described by two modes)
around the point of � ¼ 1=2.
All our results presented above show that crystallization

is not only a general problem of symmetry as was first
argued by Alexander and McTague three decades ago [12],
but also a problem involving competition and coupling
between different length scales of the system. As demon-
strated, three modes are enough to produce all five Bravais
lattices in two dimensions as well as many of the non-
Bravais structures, including honeycomb and kagome

FIG. 4 (color online). (a) Square and (b) pentagon-hexagon
structures are obtained with Qi¼0;1;2 ¼ 1,

ffiffiffi
2

p
, 2. Example phases

with Qi¼0;1;2 ¼ 1, 2,
ffiffiffi
5

p
are shown as (c) a rectangular phase and

(d) a dimer-square crystal, with their square unit cells indicated.
Also (e) a rhombic phase at Qi¼0;1;2 ¼ 1:35, 1.57, 2.2 and (f) an

oblique phase at Qi¼0;1;2 ¼ 1,
ffiffiffi
3

p
, 2.2 are given.

FIG. 5 (color online). Snapshots of defect configurations dur-
ing dynamic simulations, for (a) honeycomb phase, (b) oblique
phase, (c) coexisting phases, and (d) dimer phase.
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phases that have been found in novel 2D crystalline mate-
rials, and also predictions of more complex phases. The
minimal model presented here can be exploited to study
not only the nonequilibrium formation of crystals and
polycrystals with a large variety of crystalline symmetries,
but also the elastic and plastic properties of such systems
[34–36]. Our results can also serve as a guide to experi-
ments on producing or self-assembling a variety of
ordered phases that can form in systems with competing
multiple scales, such as the ordering process of surface-
functionalized colloidal particles or of ultracold atoms in
tunable commensurate optical lattices. The study of such a
self-assembly process and the evolution of a defected state
requires a dynamic modeling method at time scales of
experimental relevance, for which the multimode PFC
model described here is much more applicable than con-
ventional atomistic techniques. Furthermore, our modeling
framework can be readily extended to a systematic study of
three-dimensional crystalline and polycrystalline materials
or self-assembled systems.

We acknowledge support from the National Science
Foundation under Grants No. DMR-0845264 (Z.-F. H.)
and No. DMR-0906676 (K. R. E.).
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[15] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I.
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