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We study the elastic version of the Saffman-Taylor problem: the Hele-Shaw displacement of a viscous

liquid by a gas underneath an elastic membrane. We derive the dynamics of the propagating gas-liquid

interface and of the deforming membrane. Even though the displacement of a viscous liquid by a gas is

susceptible to viscous fingering, the presence of the elastic boundary can lead to the suppression of the

instability. We demonstrate how the mechanism of suppression is provided by surface tension at the gas-

liquid interface owing to the tapered flow geometry underneath the deflected membrane. We also determine

the critical conditions for the onset of the fingering instability in the presence of the elastic boundary.
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Elastohydrodynamics [1] spans a broad range of
applications that involve the interaction of fluid flow and
compliant boundaries. Such fluid-structure interactions
are abundant in nature and technology at all scales;
examples include the lateral intrusion of magma under a
terrestrial crust [2,3], blood creeping underneath the skin
giving bruises their signature color, hydraulic fracturing
[4], and the manufacturing of semiconductors [5]. These
systems are susceptible to interfacial instabilities when
multiphase flows are involved, which inspires our work.

In this Letter, we treat the elastic version of the Saffman-
Taylor problem: the displacement of a viscous fluid by a
gas underneath an elastic membrane. Motivated by a recent
experimental study [6], we consider a radial flow confined
between two closely spaced plates, i.e., a radial Hele-Shaw
cell [7,8], where the upper plate is an elastic sheet and the
lower plate is rigid and horizontal. The cell is initially filled
with a thin film of a viscous liquid, which is then displaced
by a gas injected at the center of the cell. First, we consider
single-phase spreading underneath an elastic membrane
and show that this simpler system does not describe the
experiments in Ref. [6]. Second, we study a stable (circu-
lar) interface propagating in a two-phase system and
subsequently extract the dynamics of the deforming mem-
brane. Third, we examine the stability of a gas-liquid
interface in the presence of an elastic boundary. In a tradi-
tional Hele-Shaw cell with rigid plates, the interface
between a viscous liquid and the injected gas is susceptible
to the viscous fingering instability [8–11]. However, the
presence of an elastic membrane can stabilize the gas-
liquid interface [6]. We identify the mechanism for this
suppression to be the tapered flow passage resulting from
the deflection of the membrane, and we find the conditions
under which the stabilization occurs. Thus, elastic mem-
branes offer geometrical means to control the fingering
instability [6,12–14].

Single-phase spreading.—To start, let us consider the
spreading of a fluid with viscosity � under an elastic

membrane with zero initial height [2], see Fig. 1(a). As
the fluid is supplied at the center (r ¼ 0) with a constant
flow rate Q, the thin and massless elastic membrane bends
axisymmetrically, rendering the dynamics dependent only
on the radius r and time t. Assuming the flow to be
incompressible, the continuity equation is

@h

@t
þ 1

r

@

@r
ðrhuÞ ¼ 0; (1)

where hðr; tÞ is the height of the elastic membrane and
uðr; tÞ is the fluid’s depth-averaged velocity, which for
viscous flows can be described by Darcy’s law [15].
Assuming that the gravitational forces acting on the fluid
are much smaller than viscous forces, we have
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FIG. 1. (a) Single-phase spreading. Schematic of a system in
which a fluid of viscosity � is injected at a constant flow rate Q
underneath a thin elastic membrane with zero initial height.
(b) Two-phase displacement. Schematic of a radial Hele-Shaw
cell where the bottom boundary is a rigid horizontal plate and the
top boundary is a thin elastic sheet. A gas is injected at the center
of the cell at a constant flow rateQ, displacing a viscous liquid of
viscosity � and deflecting the elastic membrane. The height of
the membrane hðr; tÞ is initially b and the gas-liquid interface is
located at r ¼ r0ðtÞ.
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u ¼ � h2

12�

@p

@r
: (2)

Neglecting inertia and stretching of the membrane [15], the
depth-averaged pressure in the fluid pðr; tÞ must match the
bending stress of the membrane. For small deformations,
the membrane obeys linear elasticity so that p ¼ Br4h
[16], where B is the bending modulus of the membrane.
Substituting Eq. (2) into Eq. (1) and using the expression
for the pressure, we obtain the governing partial differen-
tial equation (PDE) for the deflection of the membrane [2]:
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�
; (3)

wherer4 is the axisymmetric biharmonic operator in polar
coordinates. The PDE (3) is subject to a global mass
conservation constraint, which, for a constant rate of in-
jection, is written as

2�
Z 1

0
hðr; tÞrdr ¼ Qt: (4)

A scaling analysis of the PDE (3) subject to the constraint
(4) reveals that

h�
�
�

B

�
1=6

Q1=2t1=3 and r�
�
�

B

��1=12
Q1=4t1=3: (5)

Thus, for steady injection of a fluid underneath an elastic
membrane with zero initial height, we infer from Eq. (5)
that both the extent of spreading of the fluid and the height

of the membrane increase as t1=3.
Two-phase displacement.—Consider now a two-phase

system representative of the experiments [6], see Fig. 1(b).
AHele-Shaw cell with depth b and an elastic top boundary is
initially filledwith awetting viscous liquid of viscosity� and
density �. At the center of the cell, a gas is injected at a
constant flow rate Q displacing the viscous liquid axisym-
metrically in the radial direction, while also deflecting the
elasticmembrane. The position and velocity of the gas-liquid
interface are denoted by r0ðtÞ and UðtÞ ¼ dr0=dt, respec-
tively, and the corresponding cell height is hðr0ðtÞÞ ¼ h0ðtÞ.
Experiments conducted in this setup revealed that the inter-
face advances as r0ðtÞ � t0:36�0:01 [6,17], which is slightly

faster than the t1=3 dynamics of single-phase spreading
[Eq. (5)]. Furthermore, the experiments exhibited a depen-
dence on the initial cell depth b, which is a feature not
accounted for by the single-phase analysis above. In what
follows, we obtain an analytical description of the dynamics
of two-phase displacements, accounting for all parameters
including b.

As the gas invades the Hele-Shaw cell and deflects its
upper boundary, the viscous liquid accumulates under the
deformed elastic membrane forming a moving front ahead
of the interface, see Fig. 1(b). Our model relies on the idea
that the dynamics is set by this region of accumulation,
beyond which the elastic membrane is undeformed. Thus,

the moving front is assumed to have a finite extent LðtÞ:
h½r � r0ðtÞ þ LðtÞ� ¼ b. As the interface propagates radi-
ally, the volume of liquid accumulating under the moving
front increases, and it must be equal to the volume of liquid
displaced by the gas. Assuming a sharp gas-liquid inter-
face, i.e., neglecting residual wetting films trailing behind
the moving interface, mass conservation dictates that

2�
Z r0ðtÞþLðtÞ

r0ðtÞ
ðhðr; tÞ � bÞrdr ¼ �½r0ðtÞ�2b: (6)

In the moving front, the deformation of the membrane is
small, so we can neglect stretching strains [15,18]. In
addition, gravitational forces acting on the displaced fluid
are negligible in comparison to viscous forces; in the
experiments �gh30=12�UL � 1, where g is the accelera-

tion due to gravity.
To obtain the deflection hðr; tÞ of the membrane over the

moving front, we must add the advection velocity UðtÞ to
the right-hand side of Eq. (2). Then, the two-phase version
of Eq. (3) is
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subject to the boundary conditions:

hjr¼r0 ¼ h0ðtÞ; hjr¼r0þL ¼ 0; h3
@

@r
r4h

��������r¼r0þL
¼ 0:

(8)

The third condition in Eq. (8) enforces no flux at the
leading edge of the moving front. Moreover, observe that
Eq. (8) neglects terms of Oðb=h0Þ, which is small in the
experiments [6,17].
The last boundary condition [19] is imposed on the slope

�ðtÞ of the membrane at r ¼ r0ðtÞ, see Fig. 1(b). The slope
�ðtÞ can be related to other parameters based on a geo-
metric analysis [21], which assumes a slender membrane
j�j � 1. Neglecting compression in the gas phase, i.e., the
resistance to the bending of the thin membrane is much
smaller than the resistance to the compression of the gas,
the volume occupied by the gas under the slender mem-
brane is Qt, so that

�ðtÞ ¼ @h

@r

��������r¼r0

¼ � 3

�

Qt

r30
þO

�
h0
r0

�
: (9)

Note that Eq. (9) relates �ðtÞ to the interface position r0ðtÞ,
which we later determine from the physical balances of the
system.
As the interface propagates radially, the elastic mem-

brane is deflected and the volume of the moving front
increases. As a result, h0ðtÞ, r0ðtÞ, and LðtÞ increase such
that "ðtÞ ¼ LðtÞ=r0ðtÞ � 1 decreases in time, approaching
zero. In the slope condition (9), we can neglect terms of
Oðh0=r0Þ since h0=r0 ¼ "h0=L while � ¼ Oðh0=LÞ.
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A local scaling analysis of Eq. (7) shows that, for long
times, @h=@t isOð"Þ in comparison to the convective term.
Thus, the dominant balance between the convective and
elastic terms yields a quasi-steady moving front [20] of the
form

hðr; tÞ ¼ h0ðtÞð1� xÞ5=3; x ¼ r� r0ðtÞ
LðtÞ : (10)

Since we neglected terms of Oðb=h0Þ in Eq. (8), our model
(10) does not capture Oðb=h0Þ distortions of the elastic
membrane. The speed of the front is obtained by first
substituting Eq. (10) into Eq. (7). Neglecting terms of
Oð"Þ andOðð�L6=Bh40Þdh0=dtÞ, we then find that the front
is traveling at a speed

dr0
dt

¼ 280

243

B

12�

h30
L5

: (11)

Now, we substitute Eq. (10) into the conservation con-
straint (6) and the slope condition (9). To the leading order,
we obtain

Lh0 ¼ 4

3
br0; (12)

h0
L

¼ 9

5�

Qt

r30
: (13)

Solving the system (11)–(13) for the three unknowns r0ðtÞ,
h0ðtÞ, and LðtÞ, we find the power laws

r0ðtÞ ¼ Cr

�
BQ4

�b

�
1=14

t5=14; (14a)

h0ðtÞ ¼ Ch

�
�b8Q3

B

�
1=14

t1=7; (14b)

LðtÞ ¼ CL

�
B2b5Q

�2

�
1=14

t3=14; (14c)

where the constants Cr¼ð1323=625�4Þ1=14� 0:76,

Ch ¼ 2ð81=6125�3Þ1=14 � 1:15, and CL ¼ ð2=3Þ�
ð2401=15�Þ1=14 � 0:88.

The self-similar dynamics described by Eq. (14)
is weakly sensitive to the physical properties and
parameters of the system. Using Eq. (14), we can show
that the neglected quantities " ¼ L=r0, b=h0, and
ð�L6=Bh40Þdh0=dt all scale identically

";
b

h0
;
�L6

Bh40

dh0
dt

�
�
Bb6

�Q3

�
1=14

t�1=7 ’ Oð10�1Þ (15)

for typical times in Ref. [6] and decay to zero as t ! 1.
Next, we compare our theoretical results, which have no

adjustable parameters, to the experimental findings [6,17].
In particular, we predict from Eq. (14a) that a stable
(circular) interface advances under an elastic membrane

as r0 � t5=14, which is in excellent agreement with the t0:36

scaling observed experimentally [6,17]. Figure 2 shows

that, for two disparate sets of conditions, our asymptotic
analysis captures the dynamics of the two-phase system.
This agreement supports our hypothesis that the dynamics
is set by the liquid accumulating under the moving front.
We note that both the relative deviation of the prefactor
Cr and the spread of the experimental data are Oð"Þ
(see Supplemental Material [21]).
We can extend our analysis, in which we consider a

gas displacing a viscous liquid, to an injected fluid of
finite viscosity �i if the viscous forces in the injected fluid
(��iUr20=h0) are much smaller than the viscous forces in

the displaced fluid (��ULr0=h0). That is, our asymptotic
analysis is valid if �i=� � ". This condition is met in
Ref. [6], where�i=� ’ 10�5 and " ’ 10�1. We expect our
results to hold, for instance, if the injected fluid is water, for
which �i=� ’ 10�3. In such a scenario, gravitational
forces are still negligible since water and the displaced
vicous liquid have comparable densities.
Inhibiting viscous fingering.—In a Hele-Shaw cell with

rigid boundaries, the interface between a gas injected at a
constant rate and a displaced viscous liquid is unstable
owing to the viscous fingering instability [7,8]. In contrast,
if the upper boundary of the cell is an elastic membrane,
the gas-liquid interface can be stabilized at low flow rates
[6]. Next, we explain this finding and determine the critical
injection rate.
Since displacement in the two-phase system is flow-rate

controlled, the surface tension � at the gas-liquid interface
does not contribute to the dynamics of a stable (circular)
interface propagating underneath an elastic membrane.
However, surface tension forces are instrumental in
determining the stability of the interface. To investigate
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FIG. 2. Propagation of the gas-liquid interface. Comparison
between our prediction (solid line) in Eq. (14a) and the experi-
mental results in Ref. [6], which were conducted using a liquid
of viscosity � ¼ 1:04 kgm�1 s�1 and a membrane with bending
modulus B. The initial membrane height is b, and then nitrogen
gas is injected at a constant flow rate Q. (Filled circles) Q ¼
55 mLmin�1, B ¼ 1:46� 10�1 Nmm, and b ¼ 0:56 mm.
(Filled squares) Q ¼ 300 mLmin�1, B ¼ 2:81� 10�2 Nmm,
and b ¼ 0:79 mm. The dashed line is Eq. (14a) with the
prefactor adjusted to be 1:25� Cr. The units of the vertical
axis are s5=14.
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interfacial instabilities, it is important to examine the
shape of the flow passage in the neighborhood of the
interface [12,14]. To this end, we calculate the slope �ðtÞ
of the elastic membrane at the interface by substituting
Eqs. (10), (14b) and (14c) into the definition of the slope
� ¼ ð@h=@rÞr¼r0 . We find that

�ðtÞ ¼ �C�

�
�3b3Q2

B3

�
1=14

t�1=14; (16)

where C� ¼ ð5=3ÞðCh=CLÞ � 2:17. The inclination of the
membrane varies very slowly in time and, in particular, it
changes much more slowly than the position of the
interface.

The previous disparity between the change of membrane

inclination (d�=dt� t�15=14) and the rate of fluid displace-

ment (dr0=dt� t�9=14) suggests that we must first under-
stand the stability of an interface propagating in the fixed
(static) tapered geometry induced by the deflected mem-
brane, see Fig. 1(b). Recently, Al-Housseiny et al. [12]
demonstrated the control of viscous fingering in the pres-
ence of a taper. For a radially tapered Hele-Shaw cell, they
derived a stability criterion [13] that predicts that the inter-
face between a gas and a perfectly wetting viscous liquid is
stable if

1þ 2�þ h20=r
2
0

Ca
< 0; (17)

where Ca ¼ 12�U=� is a characteristic capillary number
for the Hele-Shaw configuration. Here, since unstable
modes grow exponentially, the elastic membrane is sta-
tionary at the time scale of the instability. The mean speed
of the interface is then given by UðtÞ ¼ Q=ð2�r0h0Þ.

In the absence of a taper, i.e., for� ¼ 0, the inequality in
Eq. (17) cannot be satisfied, and a gas propagating into a
wetting liquid always yields, for long times, an unstable
interface for a constant injection rate [7,8]. As in Eq. (9),
h20=r

2
0 � j�j. Thus, for �< 0, the stability condition in

Eq. (17) reduces to Ca< 2j�j for long times. As a result,
there exists a critical displacement speed below which the
fingering instability is suppressed [12,13]. We can rewrite
Ca< 2j�j using Eqs. (14a), (14b), and (16) as

rc ¼ Cr

�
3

�

1

CrChC�

�

�b1=2

�
5=6

�
B

�b

�
1=4

Q7=12; (18)

where rc is the critical radius at which the stably propagat-
ing gas-liquid interface is predicted to transition to an
unstable state. Therefore, if we tune the system parameters
such that the radius of fluid displacement is always smaller
than rc, then the interfacial instability will not be
manifested.

Alternatively, for a stable interface located at a given
radius R, we can determine a critical flow rate Qc above
which the interface becomes unstable. Rearranging
Eq. (18), we find

Qc ¼ CQ

�R

�

�
�3R5b8

B3

�
1=7

; (19)

where CQ ¼ ½ð�=3ÞChC��10=7C�2=7
r � 4:26. Thus, we

infer that Qc � B�3=7. This dependence is supported by
the experimental findings in Ref. [6] as shown in Fig. 3.
Hence, the mechanism we have identified, based on the
taper caused by the deflection of the membrane, captures
the influence of the elastic boundary on the onset of the
viscous fingering instability. We note that the limit B ! 1
corresponds to the classical system with rigid parallel
plates, in which the interface is always unstable at late
times for a constant rate of injection.
Conclusion.—We studied the displacement of a viscous

liquid by a gas in a radial Hele-Shaw cell with an elastic
top boundary. We found that the dynamics of this two-
phase system is predominantly set by the viscous liquid
that accumulates ahead of the interface. Furthermore, the
compliance of the membrane can facilitate the inhibition of
the classical viscous fingering instability. As the gas is
injected at the center of the elastic cell, the membrane is
deflected forming a tapered geometry over the gas-liquid
interface. This taper, rather than bending stresses alone [6],
is the underlying geometric mechanism responsible for the
suppression of the instability. The interface remains stable
since the tip of any developing finger experiences higher
capillary resistance than the lagging parts of the finger
owing to the tapered geometry [12,14]. A number of
studies have previously focused on a variety of injection
schemes to control viscous fingering [22–25]. In contrast,
elastic membranes present a simple geometrical approach.

10−2 10−110
2

103

3
7

FIG. 3. The influence of the bending modulus on the onset of
viscous fingering. Comparison between our scaling for the
critical flow rate (19) and the experimental results (open circles)
in Ref. [6]. To vary the bending modulus B in the experiments,
membranes of different thicknesses were used. The critical flow
rate Qc is the minimum gas flow rate required to initiate an
interfacial instability at R ¼ 5 cm. The initial height of the
elastic membrane is b ¼ 0:56 mm. The viscosity and the surface
tension of the displaced wetting liquid are � ¼ 1:04 kgm�1 s�1

and � ¼ 22 mNm�1, respectively. The solid line represents
Eq. (19) with the prefactor adjusted to be 1:7� CQ. This offset

in the prefactor is expected due to the cumulative discrepancies
resulting from the asymptotic approximation (15) and from
neglecting the effect of the wetting film [12,26] on the stability
threshold (17).
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