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In this Letter, we study the friction between a one-dimensional elastomer and a one-dimensional rigid

body having a randomly rough surface. The elastomer is modeled as a simple Kelvin body and the surface

as self-affine fractal having a Hurst exponent H in the range from 0 to 1. The resulting frictional force as a

function of velocity always shows a typical structure: it first increases linearly, achieves a plateau and

finally drops to another constant level. The coefficient of friction on the plateau depends only weakly on

the normal force. At lower velocities, the coefficient of friction depends on two dimensionless combi-

nations of normal force, sliding velocity, shear modulus, viscosity, rms roughness, rms surface gradient,

the linear size of the system, and the Hurst exponent. We discuss the physical nature of different regions of

the law of friction and suggest an analytical relation describing the coefficient of friction in a wide range

of loading conditions. An important implication of the analytical result is the extension of the well-known

‘‘master curve procedure’’ to the dependencies on the normal force and the size of the system.

DOI: 10.1103/PhysRevLett.111.034301 PACS numbers: 46.55.+d, 62.20.Qp, 81.40.Pq

Since classical works by Bowden and Tabor [1], it is
widely accepted that the roughness plays a central role in
friction processes. Greenwood and Tabor [2] have shown
that the friction of elastomers can be attributed to defor-
mation losses in the elastomer. In 1963, Grosch supported
this idea by a series of experiments of friction between
rubber and hard surfaces with controlled roughness [3]. In
the following years, the basic understanding of the role of
rheology [4] and of surface roughness [5,6] in elastomer
friction has been achieved. Most works on elastomer fric-
tion discuss the coefficient of friction, thus implicitly
implying the validity of Amontons’ law: the force of
friction is proportional to the normal load; the coefficient
of friction is considered to be a quantity which does not
depend on the normal load [7,8]. However, it is well known
that this law is only a very rough first approximation and
that both the static and the sliding coefficient of friction,
even between the same material pairing, can change by a
factor of about 4 depending on the geometry of a tribo-
logical system as a whole and loading conditions. The load
dependence of the elastomer friction was studied experi-
mentally by Schallamach [9]. In a more general context,
the strong violations of Amontons’ law were studied ex-
perimentally and theoretically in recent papers [10,11].
Deviations from Amontons’ law can be due to macroscopic
interfacial dynamics [12–14] or they can be connected with
the contact mechanics of rough surfaces. This Letter is
devoted to a study of elastomer friction beyond the regions
of validity of Amontons’ law due to purely contact me-
chanical reasons. To achieve the basic understanding of
this nonlinear frictional behavior, we consider the follow-
ing simple model: (i) the elastomer is modeled as a simple
Kelvin body, which is completely characterized by its

static shear modulus and viscosity, (ii) the nondisturbed
surface of the elastomer is plane and frictionless, (iii) the
rigid counter body is assumed to have a randomly rough,
self-affine fractal surface without long wave cutoff, (iv) no
adhesion or capillarity effects are taken into account, and
(v) we consider a one-dimensional model. These simple
assumptions still result in nontrivial and complicated fric-
tional behavior.
We do not claim that the reported results can be directly

applied for the friction of a true three-dimensional elasto-
mer. However, we would like to note that there is evidence
coming from recent studies of contact mechanics of both
rotationally symmetric profiles [15,16] and self-affine frac-
tal surfaces [17,18] that suggest that the results obtained
with one-dimensional foundations may have a broad area
of applicability if the rules of the method of dimensionality
reduction (MDR) [19–21] are applied. Following this
method, the elastomer was modeled as a row of indepen-
dent elements with a small spacing �x, each element
consisting of a spring with normal stiffness �k ¼ 4G�x
and a dashpot having the damping constant �d ¼ 4��x,
where G is the shear modulus and � the viscosity of the
elastomer. The counter body was a rough line having the
power spectral density C1D / q�2H�1, where q is the wave
vector andH, the Hurst exponent. The spectral density was
defined in the interval from qmin ¼ 2�=L, where L is the
system size, to the upper cutoff wave vector qmax ¼ �=�x.
The spacing �x determines the upper cutoff wave vector
and is an essential physical parameter of the model. Surface

topography was characterized by the rms roughness h ¼
½2Rqmax

qmin
C1DðqÞdq�1=2, which is dominated by the long

wavelength components of the power spectrum and the

rms gradient of the surface rz ¼ ½2Rqmax
qmin

C1DðqÞq2dq�1=2,
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dominated by the short wavelength part of the spectrum.
The rigid surface was generated according to the rules
described in [21], and periodic boundary conditions were
used. The rigid surface was pressed against the elastomer
with a normal force FN and moved tangentially with a
constant velocity v.

If the rigid profile is given by z ¼ zðx� vtÞ, and the
profile of the elastomer by u ¼ uðx; tÞ, then the normal
force in each particular element of the viscoelastic founda-
tion is given by

f ¼ �4�xfGuðxÞ þ � _uðx; tÞg: (1)

For the elements in contact with the rigid surface, this
means that

f ¼ 4�xfG½d� zðx; tÞ� þ �vz0ðx; tÞg; (2)

where d is the indentation depth. For these elements, the
condition of remaining in contact, f > 0, was checked in
each time step. Elements out of contact were relaxed
according to equation f ¼ 0: GuðxÞ þ � _uðx; tÞ ¼ 0, and
the noncontact condition u < z was checked. The inden-
tation depth d was determined to satisfy the condition of
the constant normal force

FN ¼ 4
Z
ðreal contÞ

½Gðd� zðxÞÞþ �vz0ðxÞ�dx; (3)

where the integration is only over points in contact. A
typical configuration of the contact is shown in Fig. 1.
The tangential force was calculated by multiplying the
local normal force in each single element with the local
surface gradient and subsequently summing over all
elements in contact

Fx ¼ �4
Z
ðreal contÞ

z0ðxÞ½Gðd� zðxÞÞþ �vz0ðxÞ�dx: (4)

Because of the independence of the degrees of freedom, the
algorithm is not iterative and there are no convergence
problems.

The one-dimensional model is computationally efficient
and allows carrying out extensive parameter studies. The
following ranges of parameters have been covered in the
present study. The length of the systemwasL ¼ 0:02 m and
the number of elementsN ¼ L=�xwas typically 5000 with
exception of caseswhere the dependence on�xwas studied.
Instead of viscosity, the relaxation time � ¼ �=G ¼ 10�3 s
was used. 11 values of Hurst exponent ranging from 0 to 1
were studied. All values shown below were obtained by
averaging over 200 realizations of the rough surface for
each set of parameters. Parameter studies have been carried
out for 20 different normal forces FN , ranging from 10�3 to
102 N, 20 values of the G modulus from 103 to 109 Pa, 20
values of rms roughness h from 10�9 to 10�5 m, and 20
values of the spacing�x from 10�5 to 10�7 m, while in each
simulation series only one parameter was varied. The pre-
sented results are based on approximately 3:5� 106 single
simulations with the total net computation time of about
50 h. It is well known that the maximum value of the

coefficient of friction � in the medium range of velocities
is proportional to the rms gradient of the surface profile [19].
We, therefore, present the normalized friction coefficient
�=rz instead of � in this Letter.
A typical dependence of the coefficient of friction on the

sliding velocity is shown in Fig. 2. At first, it increases
linearly with velocity (region I), it then achieves a plateau
(region III) and decreases again to a new constant value
(region IV). We also marked an intermediate region (II)
where transition from the linear velocity dependence to the
plateau takes place. This region covers one decade of
velocities, and the coefficient of friction increases here
by a factor of two. Fig. 3 shows the velocity dependence
in double logarithmic scale for 6 different Hurst exponents.
It is obvious that at small velocities, the coefficient of
friction increases linearly with velocity. The absence of
the decreasing region IV in Fig. 3 (and Fig 4 at high loads)
is only due to the fact that for high forces this region is
outside the scope of practical velocities and is therefore not
shown in these figures.
Fig. 4 presents velocity dependencies of the coefficient

of friction for 20 different normal forces. One can see that
the form of the dependence for different forces is approxi-
mately the same, only shifted along the axis of the loga-
rithm of velocity. There are two distinctly different
regions: in zone 1 there is a partial contact of the rigid
surface and the elastomer, while in zone 2 they are in
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FIG. 1 (color online). One-dimensional contact between a
rough surface and a viscoelastic elastomer. Note the difference
in vertical and horizontal units.
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FIG. 2. A typical dependence of the normalized coefficient of
friction on the velocity. In this particular case, the results were
obtained for the following set of parameters: FN ¼ 0:0034 N,
G ¼ 107 Pa, h ¼ 5� 10�7 m, and H ¼ 0:7.
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complete contact. In both of the zones, the shift factor
increases linearly with the logarithm of force, the coeffi-
cient of friction, thus, being a power function of the normal
force. Simulations with different rms gradients of the
surface (which were varied by changing the spacing �x)
show that the coefficient of friction in this region is very
accurately proportional to rz2 and depends on the force
and shear modulus only over the ratio FN=G. The only
form of the dependence which fits these empirical obser-
vations and meets the dimensional demands is

� ¼ �
�vrz2

h

�
GhL

FN

�
�
; (5)

where � and � are dimensionless constants. Empirical
values of these constants extracted from numerical data
are shown in Fig. 5.

Let us support this result with an analytical estimation.
At low velocities, the values of z in the border points of
each partial contact region in the Eq. (4) are the same
(z ¼ d); thus, the integral

R
real cont z

0ðxÞ½Gðd� zðxÞÞ�dx
vanishes identically. For the coefficient of friction we get

� ¼ 4Lcont�rz2cont
FN

v: (6)

Here, Lcont is the total contact length and rzcont the rms
slope in the region of real contact. The rms slope is
dominated by the short wavelength part of the spectrum.
It can be approximately replaced by the average rms slope
of the entire surface rzcont � rz. At the end of the Letter,
we discuss the weak dependence of rzcont on loading
parameters in more detail.
For small forces, in zone 1, the contact length is a power

function of the normal force [17]: Lcont / F1=ð1þHÞ, and the
coefficient of friction will be given by � / F�H=ð1þHÞ.
Comparing this with Eq. (5) provides an analytical estima-
tion for the exponent �:

� ¼ H

1þH
: (7)

For large normal forces, in zone 2, the contact length
achieves a saturation value of Lcont ¼ L. The coefficient
of friction becomes

� ¼ 4L�rz2
FN

v; (8)

which is exactly confirmed by numerical simulations.
Finally, in the plateau region, the coefficient of friction
shows only a weak dependence on the Hurst exponent
(Fig. 6). In the range of 0:2<H < 0:8 and for not too small
forces, it is almost constant and can be approximated as

� � ffiffiffi
2

p rzcont: (9)

This result has a simple physical meaning. In the plateau
region, the elastomer behaves practically as a viscous fluid:
the elasticity does not play any role and all contacts are
‘‘one-sided.’’ The normal and tangential forces reduce to
Fx¼4

R
ðrealcontÞ�v½z0ðxÞ�2dx, FN¼4

R
ðrealcontÞ�vjz0ðxÞjdx.

For the normalized coefficient of friction we get
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FIG. 3 (color online). Dependence of friction coefficient on
velocity for different Hurst exponents and F¼10N,G ¼ 107 Pa,
h ¼ 5� 10�7 m. Solid lines correspond to the analytical
approximation (11).
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exponent in zone 1 (see Fig. 4)]. Analytical estimation of the
exponent � according to (7) is shown with the bold line. For
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FIG. 4 (color online). Double logarithmic presentation of the
dependence of the normalized friction coefficient on velocity for
20 exponentially increasing normal forces ranging from 10�3 to
102 N, as indicated by the arrow (G ¼ 107 Pa, h ¼ 5� 10�7 m,
andH ¼ 0:7). The third line from the left corresponds to the data
shown in Fig. 2.
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� ¼
R
ðreal contÞðz0ðxÞÞ2dxR
ðreal contÞ jz0ðxÞjdx

¼ rzcont

�R
ðreal contÞðz0ðxÞÞ2dx

�
1=2

R
ðreal contÞ jz0ðxÞjdx

: (10)

For an exponential probability distribution function of the
gradient of the surface, the ratio of the integrals in (10) is

equal to
ffiffiffi
2

p
, in accordance with (9), and it depends only

weakly on the form of the distribution function.
The results (5) and (7)–(9) can be combined in the

following equation providing an interpolation between
the three regions I, II, and III:

� ¼
�

1

2rz2cont
þ

�
FN

4L�rz2contv
�
2

þ
�

h

��rz2contv
�
FN

GhL

� H
1þH

�
2
��1=2

: (11)

The quality of this interpolation can be seen in Fig. 3 where
the numerical results for six Hurst exponents are plotted
together with analytical dependencies (11). This equation
can be rewritten in the dimensionless form

�� ¼
�
1þ ð �ðFN=4Þ2 þ ð �FNÞ 2H

1þHÞ
�v2

��1=2
; (12)

with a normalized coefficient of friction �� ¼ �=

ð ffiffiffi
2

p rzcontÞ, dimensionless velocity

�v ¼ �vrzcontffiffiffi
2

p
h

; (13)

and dimensionless force

�FN ¼ FN

GhL
: (14)

Let us discuss the physical meaning of the quantities �v and
�FN . The condition �FN � 1 gives the order of magnitude of
the force at which complete contact is achieved, while the
condition �v � 1 determines the order of magnitude of

velocity at which the elastomer is detached from the rigid
surface on the trailing side of any asperity and all the
contacts become ‘‘one-sided.’’ Indeed, according to (2),
the condition of detachment f ¼ 0 means d� zðxÞ þ
�vz0ðxÞ ¼ 0. Taking into account that d� z has the order
of magnitude of h and z0 has the order of magnitude of
rzcont, we come to the conclusion that the one-sided
detachment of the elastomer will occur if ð�=GÞvrzcont >
h or �v > 1. Note that the same conditions are valid in the
corresponding three-dimensional problem: for achieving
the plateau value of contact stiffness ( �FN � 1, [17]) and
for the one-sided detachment of the elastomer ( �v � 1).
Let us discuss the decrease of the coefficient of friction

beyond the region of validity of approximation (12), at large
velocities (region IV in Fig. 2). Such a decrease at large
velocities is typical for elastomer friction and is usually
associated with a decrease in the ‘‘rheological factor’’
ImGð!Þ=jGð!Þj at high frequencies [6], where Gð!Þ is
the complex modulus of the elastomer and ImGð!Þ its
imaginary part. For the case of the Kelvin body, however,

the rheological factor is equal to �!=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ ð�!Þ2p

; it
increases monotonically and tends towards 1 at high fre-
quencies. In this case, the decrease of the coefficient of
friction is not related to the rheology but rather to the
dependence of the rms slope on the size of the real contact.
Indeed, for randomly rough surfaces, the rms slope in the
contact region can be estimated as

rzcont ¼
�
2
Z qmax

qcont

C1DðqÞq2dq
�
1=2

/
�½q�2ð1�HÞ

max � q�2ð1�HÞ
cont �

2ð1�HÞ
�
1=2

; (15)

where the lower integration limitqcont � 2�=Lcont decreases
with increasing size of the real contact. For 0<H < 1, the
integral (15) depends only weakly on the lower integration
limit unless the contact length becomes extremely small so
that qcont approaches qmax. Thus, the coefficient of friction in
the region of plateau will decrease with decreasing indenta-
tion depth. This happens either at extremely high sliding
velocities (Fig. 2, region IV) or at extremely low normal
forces as illustrated inFig. 6. The dependenceofrzcont on the
contact size and, thus, on velocity and force is less pro-
nounced for smallHurst exponents,H � 0, and gets stronger
forH � 1. Note that the increase of rms slope with increas-
ing indentation is closely associated with the assumption of
the "randomness" of roughness, as the estimation (15) is only
valid if the Fourier components of roughness with different
wave vectors have uncorrelated phases. One can say that
randomly rough surfaces are always rougher on the slopes
of waviness than on the summits. Real surfaces, on the
contrary, may have different kinds of correlated roughness.
One can easily imagine a surface, which is rougher on the
summits than on the slopes; for such surfaces, the rms slope
of roughness would decrease with indentation. The general
and robust statement, which is independent of the kind of the
roughness correlation, is only that the rms slope in the contact
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region is a function of indentation depth and, thus, a function
of the nondimensional force (14). This statement even
remains valid if the linear viscoelastic behavior of the mate-
rial breaks down at themicroscale. Indeed, the statement that
the frictional force will depend on the indentation depth is
correct for any kind of processes at the microscale. The
indentation depth, however, is governed by the contact stiff-
ness which is dominated by the largest wavelength in the
power spectrum of the roughness. The general conclusions
that the nondimensional force (14) is a governing parameter
of the friction process will, therefore, remain valid indepen-
dently of the particular character of the microscopic pro-
cesses. We can summarize our results to the following
general scaling relation:

� ¼ rzcontð �FNÞg½ �v=fð �FNÞ�; (16)

or, in explicit form,

� ¼ rzcont
�
FN

GhL

�
g

�
�vrzcontffiffiffi

2
p

h

�
f

�
FN

GhL

��
: (17)

This scaling relation means that the dependence of the coef-
ficient of friction on velocity in the double logarithmic
presentation has the same form for different values of all
parameters appearing in this equation: force FN , size of the
system L, and relaxation time �. Changing of any of these
parameters will only shift the curves horizontally by the

factor of � log½�rzffiffi
2

p
h
=fð FN

GhLÞ� and vertically by the factor of

logrzcontðFN=GhLÞ. In particular, the curves will be shifted
by changes of temperature (which influences the relaxation
time). The shifting procedure with regard to temperature is
well known and widely used in the physics of friction of
elastomers for constructing ‘‘master curves’’ describing the
friction coefficient at any velocity and temperature (see, e.g.,
[22]). Eq. (17) means that the master curve procedure can be
generalized to dependencies on other loading and system
parameters. While the particular form (11) of the law of
friction is limited by the assumptions of simple viscoelastic
rheology, the general scaling relation (17) should have a
wider range of application and it should be possible to
validate it experimentally.

In conclusion, we have shown that the law of friction
between a linear viscoelastic body and a rigid fractal surface
can be formulated in terms of two dimensionless variables
(13) and (14) which are proportional to the sliding velocity
and the normal force, correspondingly. Over these varia-
bles, the force of friction generally depends on all material,
loading, and roughness parameters: sliding velocity, normal
force, shear modulus, viscosity, rms roughness, rms slope,
and even the size of the system. Generally, the force of
friction is not proportional to the normal force; thus,
Amonton’s law is violated. However, in the plateau region,
where the coefficient of friction achieves its maximum, it is
proportional to the rms slope of the roughness in the contact
region and depends only weakly on the normal force or any
other system parameter. We provided physical inter-
pretation of the dimensionless variables and a simple

interpolation equation summarizing all numerical and ana-
lytical data for a surface with self-affine roughness having
Hurst exponents in the rage from 0 to 1. One of the impli-
cations of the obtained analytical results is the generaliza-
tion of the master curve procedure to further variables such
as the normal force and the size of the system. We argued
that themain physics of the frictional process are dimension
invariant. In particular, the general scaling relations should
retain their validity for three-dimensional systems.
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