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We report results of a high precision phase estimation based on a weak measurement scheme using a

commercial light-emitting diode. The method is based on a measurement of the imaginary part of the

weak value of a polarization operator. The imaginary part of the weak value appeared due to the

measurement interaction itself. The sensitivity of our method is equivalent to resolving light pulses of

the order of a attosecond and it is robust against chromatic dispersion.
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High precision phase measurements play a significant
role in modern physics. The standard tool is an interfer-
ometer with a balanced homodyne detection [1]. It requires
a coherent source, and the precision is dominated by the
intrinsic quantum noise [2]. To reduce the influence of the
noise, quantum metrology technologies [3], including
N00N states [4] and squeezed states [5], have been
exploited, while white light is usually deemed to be useless
in quantum metrology. Recently, it has been proposed that
white light can be used for a very precise phase estimation
[6,7], when weak measurements are performed. Here, we
experimentally demonstrate such a sensitive method utiliz-
ing white light from a commercial light-emitting diode
(LED). This opens a new avenue for a high-resolution
phase estimation.

As in other weak measurement experiments in which the
Aharonov-Vaidman-Albert amplification effect [8] was
demonstrated, we measure the photon polarization opera-
tor A with eigenvalues 1 and �1 for the two orthogonal
polarizations. The polarization can be pre- and postse-
lected with a very good precision. The role of the measur-
ing device is played by the spatial degree of freedom of
light. In most weak measurement experiments, the relevant
spatial degree of freedom is the position in the transverse
direction, i.e., perpendicular to the direction of the light
propagation. Here, we consider instead the longitudinal
direction [6,7].

The interaction Hamiltonian is

H ¼ gðtÞPA; (1)

where gðtÞ is the coupling strength satisfying
R
gðtÞdt ¼ k

and P is a component of the momentum of the photon. In
the first realization of weak measurement, the transversal
shift was created by a tilted plate of a birefringent material
[9]. In our experiment, the plate is placed perpendicularly
to the photon’s velocity and leads to a longitudinal shift;
see Fig. 1(a). We consider a very thin birefringent plate
which leads to a time delay of a few attoseconds between
the wave packets with different polarizations. The

Aharonov-Vaidman-Albert effect with the proper pre-
and postselection of polarization can increase the time
delay significantly, but a truly dramatic advantage is
obtained for the measurement of the imaginary part of
the weak value of the polarization operator which
corresponds to the measurement of the spectrum shift;
see Fig. 1(b).
In weak measurement experiments with the transversal

shift, the component of momentum in the interaction
Hamiltonian (1) is perpendicular to the direction of light,
and its expectation value is 0. In the weak measurement
regime, the uncertainty of the perpendicular momentum is
small, and thus the interaction Hamiltonian is weak, and
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FIG. 1 (color). Weak measurement of the photon polarization.
Photons emitted from the source are preselected by a polariza-
tion beam splitter (PBS) in a state jc prei, undergo weak mea-

surement interaction by passing through a birefringent plate, and
are postselected at a nearly orthogonal state j�posti by a second

PBS. (a) The wave packets with orthogonal polarizations are
delayed after the birefringent plate, one relative to the other, by a
few attoseconds, but after the second PBS, they interfere in the
postselected wave packet being shifted in proportion to the real
part of the weak value of the polarization operator. (b) The shift
of the spectrum of the light is proportional to the imaginary part
of the weak value of the polarization operator.
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we can neglect the change of the photon polarization wave
function due to the measurement interaction.

In our case, the momentum in the Hamiltonian (1) is in
the direction of the motion, and its expectation value is P0.
Thus, the evolution of the photon’s polarization during the
measurement cannot be neglected. The uncertainty of the
momentum �P, corresponding to the width of the spec-
trum of our light source, is relatively small, so the evolu-
tion of the polarization state is essentially known and can
be taken into account. Since the uncertain part of the
interaction is small, we can use the formalism of weak
measurements even when the coupling to the measurement
device causes a non-negligible effect.

An important practical advantage of weak measure-
ments lies in measuring the imaginary part of the weak
value, which shifts a variable conjugate to the one which is
normally affected by the relevant Hamiltonian [10]. This
opens a whole new category of experimental techniques.
Indeed, it led to the first observation of the tiny shift
due to the quantum Hall effect for light [11] and to ultra-
sensitive measurement of the mirror tilt in a Sagnac
interferometer [12].

It has been suggested that the measurement of a phase
using an imaginary weak value can outperform standard
interferometry [6]. However, in our experiment, the pre-
and postselection of polarization is achieved using linear
polarizers, so in the absence of additional evolution, the
weak value of a linear polarization operator is real.
Inserting a quarter-wave plate will create a circular com-
ponent in the polarization, but because of the wide spec-
trum, the polarization state will be a mixture with a large
uncertainty, and for such a wide spectrum, we cannot
correct it using a dispersive material. Instead, the imagi-
nary part of the weak value is created by the measurement
interaction due to the non-negligible evolution mentioned
above.

When light of wavelength �0 (corresponding to momen-
tum P0) goes through a half-wave plate of width L0, the
polarization state, represented by a vector on the Poincaré
sphere, is rotated by the angle of �. For a plate of width L,
the rotation angle will be � ¼ �ðL=L0Þ. This corresponds
to a strength of the interaction (1) of k ¼ �=P0.

The polarization states that are created and postselected
by the prisms are

jc prei ¼ sin
�

4
jHi þ cos

�

4
jVi; (2)

j�posti ¼ sin

�
�

2
� �

4

�
jHi þ cos

�
�

2
� �

4

�
jVi; (3)

where ð�=2Þ � ð�=2Þ is the angle between the optical axis
of the prisms, so �� � is the angle between the represen-
tations of jc prei and j�posti on the Poincaré sphere.

Consider the polarization state of a photon at a position x
in between the boundaries of our effective thin plate. It is
separated by a plate of width x from the preparing prism

and a plate of width L� x from the postselecting prism.
The two-state vector h�jjc i of polarization at point x is

jc i ¼ 1ffiffiffi
2

p ðe�ið�x=2L0ÞjHi þ eið�x=2L0ÞjViÞ;

h�j ¼ e�i½�ðL�xÞ=2L0� sin
�
�

2
� �

4

�
hHj

þ ei½�ðL�xÞ=2L0� cos
�
�

2
� �

4

�
hVj:

(4)

Theweak value of A ¼ jHihHj � jVihVj turns out to be the
same for any point x:

Aw � h�jAjc i
h�jc i ¼ 1� ei� cotð�2 � �

4Þ
1þ ei� cotð�2 � �

4Þ
: (5)

For small tilt � � 1, and almost orthogonal postse-
lected state � � 1, we obtain

Aw ’ 1

�� i�
(6)

and

ImAw ’ �

�2 þ �2
: (7)

When the conditions of the weak measurements are
fulfilled, the shift in the expectation value of P, after the
interaction (1), is given by �P ¼ 2kð�PÞ2ImAw [13]. For
our setup, the coupling k ¼ �=P0 is very small. The lon-
gitudinal shift is much smaller than the wavelength, so
we have

�P ¼ 2�P2�2

P0ð�2 þ �2Þ : (8)

Since �P � P0 and the light has just one direction, we
can measure P using a spectrometer, based on the relation
� ¼ ð2�=PÞ. Then, instead of Eq. (8), we will have an
equation for the shift in the wavelength:

�� ¼ 2��2�2

�0ð�2 þ �2Þ : (9)

We can see here the advantage of using white light with
a wide spectrum. Our measured signal is �� and it is
proportional to ��2, so the signal-to-noise ratio is propor-
tional to the uncertainty ��.
The weak measurement interaction in our experiment is

between the polarization and the spatial degrees of freedom
of photons. Conceptually, such an interaction is achieved
by placing a plate of birefringent material perpendicularly
to the photon velocity. The effect has to be very small, and,
in practice, we use instead two identical true zero order
half-wave plates (HWPs), one perpendicular and one
almost perpendicular but with a tiny tilt; see Fig. 2. The
optical axes of the two HWPs are perpendicular to each
other such that their effects cancel each other and the total
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longitudinal relative shift of the different polarizations
vanishes when the tilt is zero. A tilt increases the optical
path in the tilted HWP so that the system of the two HWPs
becomes equivalent to a plate of a very small width of the
same material and orientation as the tilted one. The reason
for using such a construction of the two HWPs is the
practical difficulty of constructing and manipulating a
very thin birefringent plate and the simplicity of changing
the (effective) width of the plate by tilting. The correspon-
dence between the phase shift � and the tilt angle �, shown
at the lower part of Fig. 3, is

� ¼ �
L

L0

¼ �

0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2�=n20

q � 1

1
A ’ ��2

2n20
; (10)

where refractive index n0 ¼ 1:54.
The theoretical formula (9) assumed ideal polarizers.

However, for almost orthogonal postselection correspond-
ing to a very small parameter �, we have to take into
account the uncertainty in the polarization of the photon
passing through the polarizers. When we set the angle
between the optical axis of the prisms ð�=2Þ � ð�=2Þ,
the probability for the actual parameter �0 of the pre- and
postselected photon is proportional to �02e�½ð���0Þ2=2�2�.
The factor�02 is an approximation due to the probability of
the postselection sin2ð�0=2Þ. In our experiment, ��
0:0027. Because of this uncertainty, setting the polarizers
orthogonal to each other � ¼ 0 leads to the effect
similar to a setup with ideal polarizers set to a parameter

�� 0:002. This happens because our effect is not sensitive
to the sign of �.
The experimental results, along with theoretical curves

obtained by the averaging of Eq. (9) corresponding to the
polarization uncertainty, are shown in Fig. 3. We have
performed measurements for three postselected states
with � ¼ 0:000, 0.004, and 0.014. In all cases, we changed
� from 0 to 0.013 by changing the effective width of the
birefringent plate. We obtained good correspondence
between theory and experiment and especially good cor-
respondence for orthogonal polarization filters, the case
which was easiest to control.
In order to test the robustness of our method to chro-

matic dispersion, we introduced it artificially using a 1 mm
thick ZnSe crystal; see Fig. 2. A few femtosecond pulse of
light going through the crystal will be broadened by the
order of hundreds of femtoseconds, an effect that can
gravely harm the precision for many setups. Our method,
however, also worked well when the ZnSe crystal was
moved inside. The crystal variable spectrum transmittance
slightly changed the spectrum: �0 ¼ 805 nm and �� ¼
41:6 nm. The results for � ¼ 0:000, 0.004 are presented in
Fig. 4. The change relative to the case without a ZnSe
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FIG. 2 (color). Detailed experimental setup: Photons emitted
from a LED (produced by the Epitex company), with measured
central wavelength �0 ¼ 808 nm and a spectral width of �� ¼
38:8 nm are collected by two lenses, pass through a pinhole, and
enter the first PBS (a Wollaston prism), which preselects the
polarization state jc prei. Then, the light passes two true zero

order HWPs with their optical axes perpendicular to each other
and at 45� to the axis of the first prism. The plane of the second
HWP is tilted by the angle � with respect to the first HWP.
A second Wollaston prism with its optical axis at an angle
ð�=2Þ � ð�=2Þ with respect to the first one postselects a polar-
ization state which is nearly orthogonal to the preselected one.
The light is then collected by a single-strand optical fiber and
sent to spectrometer with sampling period of 0.02 nm and a
range of 715–915 nm. A 1 mm thick ZnSe crystal is inserted to
introduce a strong dispersion. FC stands for fiber collector.
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FIG. 3 (color). Experimental results. The shift of the spectrum
of light �� as a function of a corresponding phase shift �. The
spectral shifts are shown for three different values of postselec-
tion parameter �. The square (red), circle (blue), and triangle
(green) points correspond to � ¼ 0:000, 0.004, and 0.014, re-
spectively. The red, blue, and green lines are the theoretical
predictions. The lower part shows the connection between � and
the tilt angle �which is controlled in the experiment as explained
in the text; see Eq. (10).
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crytsal is small. This demonstrates an important advantage
of our method. Modern metrology technology methods and
the scheme of the measurement of the real part of the weak
value of the polarization require a coherent source. The
amplification in the measurement of the imaginary part of
the weak value also works for our white light source.

In Fig. 4, we also presented our test of the theory in
which we repeated the experiment for � ¼ 0:004 with the
crystal filtering the LED light and thus reducing the
spectrum width to �� ¼ 18:9 nm and �0 ¼ 795 nm.
Reduction of the shift of the spectrum demonstrates the
advantage of the wide spectrum of our LED source.

Since our expression (9) for the shift is not just linear in
the phase, a special analysis is needed in order to estimate
the precision of our method. In order to get the best
precision, we have to tune the postselection parameter �
depending on the value of the measured phase �. Taking a
partial derivative of Eq. (3) relative to �, we find that
the optimal precision is obtained when we choose � ’ �.
For this choice of �, the uncertainty is �� ¼
ð�0�=��

2Þ�ð��Þ. In our experiment, estimating the mea-
sured uncertainty of the wavelength as �ð��Þ ¼ 0:1 nm,
we obtain�� ’ 0:1�. For very small phases, we set� ¼ 0
and utilize the uncertainty of the polarizers, so Eq. (9) is
irrelevant. In this case, the simplest way to estimate the
precision is by viewing the theoretical curve as a calibra-
tion in light of the very good correspondence of the � ¼ 0
curve with the experimental results. We see that the phase
shift � ’ 10�3 can be estimated with precision of the
order of � ’ 10�4. Our results compete well with coherent
light phase weak measurements [14] and currently are
significantly better than quantum metrology technology
measurements using N00N and squeezed states [15],
which are still in the process of solving experimental
problems [16].

We have performed an experiment using a commercial
LED source, demonstrating a new method for precision
phase estimation based on weak measurement. The method
is invulnerable to chromatic dispersion. Its simplicity and
robustness suggest that it can be applied for a vast range of
applications.
After completion of our experiment, we have learned

about another theoretical modification [17] which includes
analysis of the spectrum of transmitted and reflected light
of the postselection polarization beam splitter. It might
lead to further improvement of the precision of the phase
estimation, but it is beyond the scope of the current work.
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FIG. 4 (color). The shift of the spectrum of light �� for light
passing through a thick ZnSe crystal. The square (red) and circle
(blue) points correspond to � ¼ 0:000 and 0.004, respectively.
The triangles (green) also correspond to � ¼ 0:004, but for
filtered light having significantly smaller spectrum width. The
red, blue, and green lines are the theoretical predictions.
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