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We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity

that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of

such condensate states directly from the fundamental quantum GFT dynamics, following the procedure

used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum

cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a

semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is

the first concrete, general procedure for extracting an effective cosmological dynamics directly from a

fundamental theory of quantum geometry.
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The main challenge faced by all quantum gravity
approaches is to bridge the gap between Planck-scale
physics and effective physics at macroscopic scales, to
provide testable predictions. In background independent
approaches, this is a difficult task because the most natural
notion of a vacuum state is one that describes no spacetime
at all, while macroscopic geometries should be thought of
as states with a very large number of quantum geometric
excitations [1,2]. Next, one needs to extract an effective
dynamics for such highly excited states and relate it to the
usual relativistic dynamics. This is an ever harder task, and
no approach has fully succeeded, despite many interesting
results [3,4].

In this Letter, we put forward a concrete proposal to
bridge this gap and, for the first time, extract an effective
cosmological dynamics directly from a fundamental quan-
tum gravity framework (as opposed to a minisuperspace
reduction). We use the group field theory (GFT) formalism
for quantum gravity [5], which is strictly related to loop
quantum gravity and spin foam models [3], tensor models
[6], and dynamical triangulations [4]. Therefore, the rele-
vance of our results extends well beyond the GFTapproach.

After identifying a criterion for discrete geometries to
approximate continuum ones and to be compatible with
spatial homogeneity, we propose a class of GFT states
describing continuum macroscopic homogeneous (but an-
isotropic) geometries: GFT condensates, superpositions of
N-particle states satisfying the criterion for spatial homo-
geneity at eachN, which are thus spatially homogeneous to
arbitrary accuracy. The appearance of macroscopic geome-
tries is captured by a process similar to Bose-Einstein
condensation (BEC) of appropriate fundamental quanta,
thus realizing the idea of spacetime as a condensate often
advocated in the past [7,8].

Next, we extract the dynamics of such condensate states
(in two interesting cases) directly from the fundamental

quantum GFT dynamics, following the procedure used in
ordinary quantum fluids. This effective dynamics is shown
to have the form of a nonlinear and nonlocal extension of
quantum cosmology, similar to the one suggested in
Ref. [9]. As an example, we show that any GFT model
involving a Laplacian kinetic term, as suggested by recent
work on GFT renormalization, gives rise in a WKB ap-
proximation to an equation describing the classical dynam-
ics of a homogeneous universe, and in the isotropic case to
a modified Friedmann equation with corrections deter-
mined by the fundamental GFT dynamics.
Our procedure applies to any GFT model incorporating

appropriate pregeometric data, such as Refs. [10–12], and
is thus very general. It opens a new avenue to getting
effective equations for an emergent spacetime geometry
from a pregeometric scenario and lends weight to claims
that such quantum gravity models correspond to general
relativity in a semiclassical continuum approximation. Full
details of our calculations and results will be presented in a
separate publication.
Group field theory.—Group field theories are quantum

field theories on group manifolds (or their Lie algebras),
with a nontrivial combinatorial structure of quantum states
and histories. Their quantum states are in fact four-valent
graphs labeled by group or Lie algebra elements, which
can be equivalently represented as 3D cellular complexes.
The quantum dynamics, in a perturbative expansion around
the (‘‘no-space’’) vacuum, gives a sum of Feynman dia-
grams dual to 4D cellular complexes of arbitrary topology.
The Feynman amplitudes for these discrete histories can be
written either as spin foam models [13] or as simplicial
gravity path integrals [4]. The relation with other
approaches to quantum gravity is apparent.
For technical simplicity only, we focus here on the

Riemannian case. The counterpart of our construction for
Lorentzian GFT models is straightforward.
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In this setting, GFTs can be defined in terms of a
(complex) bosonic field ’ðg1; g2; g3; g4Þ on SOð4Þ4, which
can be expanded in annihilation operators: ’̂ðgIÞ ¼P

�’�ðgIÞâ�; using the basic operators ây� , one can then
construct the GFT Fock space out of the no-space vacuum
j0i. A quantum of the GFT field, created by the operator
’̂yðg1; . . . ; g4Þ, is interpreted as a tetrahedron whose ge-
ometry is given by the four parallel transports gI of the
gravitational SOð4Þ connection along links dual to its faces.
In this picture, a superposition of N-particle states in the
GFT corresponds to a spin network with N vertices or a
complex with N tetrahedra. One can use a noncommutative
Fourier transform to define thefield on conjugate Lie algebra
variables ~’ðB1; B2; B3; B4Þ [12]. The variables BI 2 soð4Þ
are bivectors associated to the faces of the tetrahedron:

BAB
�I

�
Z
�I

eA ^ eB: (1)

e is a cotetrad field encoding the simplicial geometry.
In order to ensure this interpretation, the variables BI

must satisfy two types of conditions. First, simplicity con-
straints [10–13]:

9nA 2 S3 � R4: 8 I nAB
AB
I ¼ 0: (2)

These impose a restriction on the domain of ’ to a sub-
manifold of SOð4Þ, with different constructions having
been proposed [10–12]. For example [14], Eq. (2) can be
imposed by requiring

’ðg1;g2;g3;g4Þ¼’ðg1h1;g2h2;g3h3;g4h4Þ 8 hI 2SOð3Þ;
(3)

so that ’ takes values on four copies of SOð4Þ=SOð3Þ �
S3 � SUð2Þ. For GFT models with direct relation to loop
quantum gravity [10], instead, the field dependence is
reduced to the diagonal SUð2Þ subgroup of SOð4Þ.

A second condition is invariance under gauge transfor-
mations that can be implemented as the invariance

’ðg1; g2; g3; g4Þ ¼ ’ðg1h; g2h; g3h; g4hÞ 8 h 2 SOð4Þ:
(4)

In Lie algebra variables, Eq. (4) encodes a closure
constraint: the bivectors BI must close to form a tetrahe-
dron [12].

The simplicity constraints imply that there exist vectors
eAi 2 R4 (for i ¼ 1, 2, 3) such that for all i,

BAB
i ¼ �jki e

A
j e

B
k : (5)

Approximate geometries and homogeneity.—In this
second quantized formalism, the N-particle state

jBIðmÞi :¼ 1

N!

YN
m¼1

~̂’yðB1ðmÞ; . . . ; B4ðmÞÞj0i (6)

is interpreted as a discrete geometry of N tetrahedra with
bivectors BIðmÞ associated to the faces. Assuming closure

and simplicity constraints, we parametrize Eq. (6) by 3N

bivectors fBiðmÞg (i ¼ 1; . . . ; 3, m ¼ 1; . . . ; N) of the form

of Eq. (5). On this space of bivectors, or alternatively the
space of eAiðmÞ, there is an action of SOð4ÞN

BiðmÞ � ðhðmÞÞ�1BiðmÞhðmÞ; eiðmÞ � eiðmÞhðmÞ: (7)

This corresponds to a local frame rotation. The gauge-
invariant configuration space for each tetrahedron is six-
dimensional and may be parametrized by

gijðmÞ ¼ eAiðmÞeAjðmÞ: (8)

Defining the six bilinears ~Bij :¼ BAB
i BjAB, we can express

the components gij in terms of the bivectors BiðnÞ:

gij ¼ 1

8 trðB1B2B3Þ �
kl
i �

mn
j

~Bkm
~Bln: (9)

To associate to these data an approximate continuum
(spatial) geometry, we think of the tetrahedra as embedded
into a three-dimensional topological manifold M on
which a Lie group G acts transitively, so that M ’ G=X,
where X can be a discrete subgroup of G; G defines the
notion of homogeneity [15]. An embedding of each tetra-
hedron is specified by the location of one of the vertices
and three tangent vectors specifying the directions of the
three edges emanating from this vertex

(10)

In order to exponentiate the tangent vectors to obtain the
location of the other three vertices, we can use the Maurer-
Cartan connection on G pulled back to M.
We interpret the R4 vectors eAiðmÞ associated to a tetrahe-

dron as physical tetrad vectors integrated along the edges
specified by viðmÞ, a natural choice for which is a basis of

left-invariant vector fields on G: viðmÞ ¼ eiðxmÞ, where feig
are the vector fields onM obtained by the push forward of
a basis of left-invariant vector fields on G. This requires
assuming that the tetrahedra are associated to regions in the
embedded manifold which are sufficiently flat, so that we
can approximate the tetrad as constant.
Within this approximation, the vectors eAiðmÞ are related

to physical tetrad vectors by eAiðmÞ ¼ eAðxmÞðeiðxmÞÞ. For
the SOð4Þ invariant quantities gij,

gijðmÞ ¼ gðxmÞðeiðxmÞ; ejðxmÞÞ; (11)

thus, gijðmÞ are the metric components in the frame feig.
Using the transitive action of G, we can say that a

discrete geometry of N tetrahedra, specified by the data
gijðmÞ, is compatible with spatial homogeneity if

gijðmÞ ¼ gijðkÞ 8 k;m ¼ 1; . . . ; N: (12)

This criterion only uses intrinsic geometric data and
depends on the embedding information only through the
choice of G. The correspondence between N-particle GFT
states and continuum geometries can be viewed as the
result of sampling the metric at N points.
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GFT condensates as continuum homogeneous
geometries.—The GFT framework now allows us to take
two more crucial steps: (1) lift the above construction to
the quantum setting, and (2) take N as variable and send it
to infinity. The quantum counterpart of the classical homo-
geneity condition becomes the requirement that the GFT
N-particle state has a product structure in which the same
wave function, invariant under the transformation (7), is
assigned to each GFT quantum. Then, arbitrary superposi-
tions of such N-particle states can be considered, with N
arbitrarily large. Notice that, if Eq. (12) holds for any N,
the reconstructed spatial geometry is homogeneous to
arbitrary accuracy. This is nothing else than a GFT quan-
tum condensate state [8].

We now give two explicit examples of such GFT con-
densates. The simplest is a ‘‘single-particle’’ condensate

j�i :¼ expð�̂Þj0i with �̂ :¼
Z

d4g�ðgIÞ’̂yðgIÞ (13)

if we require �ðkgIÞ ¼ �ðgIÞ, 8 k 2 SOð4Þ in addition to
Eq. (4). The second uses a two-particle operator

j�i :¼ expð�̂Þj0i with (14)

�̂ :¼ 1

2

Z
d4gd4h�ðgIh�1

I Þ’̂yðgIÞ’̂yðhIÞ; (15)

where, thanks to Eq. (4) and ½’̂yðgIÞ; ’̂yðhIÞ� ¼ 0, the
function � automatically satisfies �ðgIÞ ¼ �ðkgIk0Þ, 8 k,
k0 2 SOð4Þ. � is a ‘‘dipole’’ function [16] with the same
geometric data as Eq. (13) but with the advantage of
naturally having the right gauge invariance and of taking
into account some limited multiparticle correlation.

Effective cosmological dynamics.—We now extract the
effective dynamics for a homogeneous quantum space, i.e.,
for GFT condensates, from a generic GFT for 4D quantum
gravity, following closely the standard procedures used in
quantum fluids [17]. The action consists of a quadratic
(kinetic) term and a higher order interaction:

S½’�¼
Z
d4gd4g0 �’ðgIÞKðgI;g0IÞ’ðg0IÞþ�V ½’; �’�; (16)

leading to the fundamental quantum equation of motion

Z
d4g0KðgI; g0IÞ’̂ðg0IÞ þ �

�V̂

�’̂yðgIÞ
¼ 0 (17)

(and its complex conjugate). We now apply these operator
equations to GFT condensates. For the two choices of GFT
states, we get an effective equation for the ‘‘collective
cosmological wave functions’’ � or �. The simplest effec-
tive dynamics is obtained for the states (13). Since j�i is an
eigenstate of ’̂ðgIÞ, the expectation value of Eq. (17) in j�i
is the nonlinear equation for �:

Z
d4g0KðgI; g0IÞ�ðg0IÞ þ �

�V
� �’ðgIÞ

��������’¼�
¼ 0: (18)

This is the GFT analog of the Gross-Pitaevskii equation
for BECs. It is a nonlinear and nonlocal (on the space of
geometries) equation for the collective cosmological wave
function �, similar to the ones in Refs. [9,18].
For the state j�i, effective dynamics can be extracted by

inserting it into the quantum equations for the GFTN-point
functions. In general, the result is a coupled set of equa-
tions involving convolutions of �, again nonlinear and
nonlocal. If the interaction V is of odd order, because all
odd correlation functions vanish, the two terms in Eq. (17)
give independent constraints on the function �. The kinetic
part alone gives the nontrivial condition

Z
d4g00K̂ðg0I; g00I Þ�ðgIg00�1

I Þ ¼ 0: (19)

Since Eq. (19) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for �, with

Hamiltonian constraint given by ~K. Equation (19) implies
that a condensation of correlated pairs of GFT quanta, for
GFT models with odd interactions, is only possible if the

kinetic operator K̂ admits a nontrivial kernel.
Effective modified Friedmann equation.—We now show

that any model whose kinetic operator is the Laplace-
Beltrami operator on SUð2Þ4, together with a ‘‘mass
term,’’ gives a modified Friedmann equation in the semi-
classical and isotropic limit. SUð2Þ4 is a natural domain for
many GFT models for 4D gravity, while the Laplacian
seems to be required by GFT renormalization [19].
The effective cosmological dynamics reduces to (e.g., in

a weak-coupling limit, for j�i) or contains (for the state
j�i, which we use in the following) the equation

ð�gI þ�Þ�ðgIg0�1
I Þ ¼ 0: (20)

Using the parametrization for SUð2Þ given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~�2

p
1� i ~� � ~�,j ~�j � 1, where �i are the Pauli

matrices, the Laplace-Beltrami operator on SUð2Þ is
�gfð�½g�Þ ¼ ð�	
 � �	�
Þ@	@
fð�Þ: (21)

Rewriting �ð�I½gI�Þ ¼ A½�I� expðiS½�I�=�Þ and taking
the eikonal limit � ! 0, this equation reduces to

X
I

½BI � BI � ð�I � BIÞ2� � 0; (22)

where the multiplication dot represents the Killing form on
suð2Þ and BI :¼ @S=@�I is the momentum conjugate to
�I. Since S½�ðgIÞ� ¼ S½�ðkgIk0Þ�, 8 k, k0 2 SUð2Þ, the
BI satisfy additional relations. Within this WKB approxi-
mation, Eq. (22) becomes the Hamilton-Jacobi equation
for the classical action S.
In order to identify the BI and conjugate �I with cos-

mological variables, we follow their geometric interpreta-
tion as bivectors and conjugate infinitesimal holonomies
and write BI ¼ a2ITI and �I ¼ pIVI, where each TI and VI

is a dimensionless normalized Lie algebra element. Then,
Eq. (22) becomes
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X
I

a4I ðp2
I c

2
I � 1Þ � 0; (23)

where cI ¼ TI � VI depend on the state. Specializing to an
isotropic geometry, we can set aI ¼ �Ia, pI ¼ 
Ip for
constants �I and 
I, and Eq. (23) becomes

p2 � k ¼ O

�
�

a2

�
; (24)

where k ¼ ðPI�
4
I Þ=ð

P
I�

4
I


2
I c

2
I Þ. At leading order, this is

the classical Friedmann equation for an empty universe
with spatial curvature k. Since k > 0, this interpretation is
consistent when G ¼ SUð2Þ. The corrections to Eq. (24)
include both the subdominant terms in the WKB approxi-
mation and the corrections coming from the higher order
terms in the effective cosmological dynamics.

Discussion.—This Letter illustrates a new, concrete ave-
nue for extracting an effective cosmological dynamics
from fundamental quantum gravity. We believe it is the
first time that such a direct path is open in background
independent, pregeometric quantum gravity approaches.

The results presented can be summarized as follows. We
have identified quantum GFT states (easily exportable to
loop quantum gravity or simplicial gravity) that are natural
candidates to describe homogeneous (anisotropic) cosmo-
logical geometries. Similar states have indeed been pro-
posed in related contexts [16,20,21]; but, contrary to those
proposals, theGFT condensates do not depend on any single
lattice structure. The advantage of this will appear once
moving away from homogeneity: inhomogeneities can be
encoded in fluctuations above GFT condensate states, and
such coherent states support such perturbations at any
approximation scale. Most importantly, we could extract
an effective cosmological dynamics from the fundamental
dynamics, in full generality and rather straightforwardly.
It takes the form of a nonlinear and nonlocal extension
of (loop) quantum cosmology, a GFT analog of Gross-
Pitaevskii hydrodynamics in real BECs. This extraction
procedure can be applied to any given GFT model, specifi-
cally to the interesting models proposed in Refs. [10–12].
We have also shown that for anyGFTmodel having a kinetic
term of Laplacian form, amodified Friedmann equation can
be obtained in the semiclassical and isotropic limit.

This new avenue points to several directions, all aimed at
extracting interesting physics directly from current candi-
date GFT models for quantum gravity, which are thus
solidly rooted in a complete quantum gravity framework,
for instance, quantum gravity corrections to Friedmann-
Robertson-Walker cosmology and to the evolution of an-
isotropies and fluctuations above the GFT condensate that
describe inhomogeneities.

At a more formal level, the ongoing work on GFT
renormalization [19,22] and phase transitions in GFT and
tensor models [6,23] can now be better directed toward
proving rigorously the dynamical realization of the con-
densation leading to the states (13) or (15). This will
establish a solid mathematical basis for the physical picture
of continuum space as a GFT condensate.
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