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We study to what extent the detrimental impact of dissipation on quantum properties can be

compensated by suitable coherent dynamics. To this end, we develop a general method to determine

the control Hamiltonian that optimally counteracts a given dissipation mechanism, in order to sustain the

desired property, and apply it to two exemplary target properties: the coherence of a decaying two-level

system and the entanglement of two qubits in the presence of local dissipation.
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Genuine quantum features such as entanglement or
coherence are resources as precious as they are fragile,
and their uncovering usually requires strong efforts in
isolating and controlling quantum systems. Without thor-
ough measures, decoherence efficiently shields the quan-
tum world from our access and hides it behind its classical
guise. While there has been unprecedented progress in the
quantum control of various model systems, e.g., ions [1],
quantum dots [2], or cold atoms [3], it is impossible to
completely decouple these systems from their environment
and thus to fully suppress the detrimental effect of deco-
herence. Standard optimal control techniques therefore
focus on accessing quantum features in the transient
regime, and the exploration and exploitation of quantum
properties is consequently confined to a finite, generically
short time window.

There are, however, ways to keep the window to the
quantum world enduringly open, e.g., by encoding quan-
tum features in topological properties of a system [4] or
by engineering a dominant environment that drives the
system into a highly nonclassical stationary state [5,6].
While these approaches in principle permit one to prepare
arbitrary nonclassical quantum states, they require in gen-
eral an exceedingly large overhead of resources.

In this Letter, we therefore ask to what extent already
standard Hamiltonian control can enduringly counteract
the detrimental effect of decoherence. Explicitly, we seek
Hamiltonians that optimally uphold, on asymptotic time
scales, a given control objective (e.g., coherence, entangle-
ment, or fidelity with respect to a target state) in the
presence of dissipation. Such an asymptotic time behavior
can be meaningfully formulated for static and, more gen-
erally, periodically time-dependent Hamiltonians. In the
latter case, the asymptotic dynamics are periodic cycles in
state space, reducing to stationary states in the static case.

For our goal to single out the optimal among all
conceivable control Hamiltonians, it is not advisable to
directly scan the space of Hamiltonians, as the latter cannot
efficiently be parametrized. We therefore approach the
problem from a different perspective and determine the
optimal stationary state or asymptotic cycle directly,

i.e., independently of the Hamiltonian. The crucial insight
behind this is that physically admissible trajectories in state
space are strongly constrained by the dissipative part of
the dynamics. It thus turns out that one can characterize
all possible stationary states or asymptotic cycles from the
dissipative dynamics alone.
While our approach can be applied to the optimization

of arbitrary control objectives, we demonstrate its viability
with two physically relevant examples: the coherence
between the ground and excited states of a decaying
two-level system and entanglement of two qubits in the
presence of local dissipation.
Static control Hamiltonians.—We consider an open

quantum system evolving under a Lindblad master
equation [7]

_�ðtÞ ¼ i½�ðtÞ; HðtÞ� þD½�ðtÞ� ð@ ¼ 1Þ; (1)

with a dissipator Dð�Þ¼P

k�k½Lk�L
y
k �ð1=2ÞfLy

k Lk;�gþ�
composed of Lindblad operators Lk and rates �k. For an
arbitrary but fixed dissipator Dð�Þ, our goal is to optimize
the stationary state �ss (for static H) or asymptotic cycle
�acðtÞ [for periodic HðtÞ] of Eq. (1) with respect to an
arbitrary objective function Oð�Þ. We emphasize that
this definition of optimality differs from quantum control
scenarios that aim at rapidly preparing a given target state
on time scales when decoherence is negligible. The target
states of such time-optimal protocols are reached quickly
but persist only on transient time scales, whereas the
optimal cycles in our approach may take a long time to
emerge but then persist for arbitrarily long times.
It is instructive to investigate static control Hamiltonians

first. Direct optimization over all conceivable Hamiltonians
H involves the stationarity condition

0 ¼ i½�ss; H� þDð�ssÞ; (2)

in order to infer the stationary state �ss for a given H.
Its inversion typically requires numerical means and must
be repeated for each sample Hamiltonian, rendering this
approach impractical already in low-dimensional systems.
Therefore, we develop a different strategy here. Instead of
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starting fromHamiltonians, we base the optimization on the
set of stabilizable states S [8]:

S ¼ f�: 9H s:t: 0 ¼ i½�;H� þDð�Þg: (3)

It comprises all quantum states that become stationary
under a suitable Hamiltonian. As shown below, this set
can be characterized independently of the Hamiltonian.
Optimization of an objective function Oð�Þ can then be
done in S directly.

To derive this Hamiltonian-independent characterization
of S, we exploit that the coherent dynamics induced by H
and the dissipative dynamics induced by Dð�Þ must
compensate each other for a stationary state. Since the
coherent part of the master equation (1) i½�;H� necessarily
leaves the spectrum of � invariant, this must also hold
for the dissipator Dð�Þ at a stationary state. In other
words, Dð�Þ does not modify the purity p ¼ Tr½�2� or
any higher moment Tr½�n� with n > 2. This implies

@t Tr½�n�jH¼0 ¼
ð1Þ

nTr½�n�1Dð�Þ�, if � is in S. Since the
moments of a d-dimensional quantum state are indepen-
dent only up to n ¼ d, this leads to d� 1 necessary con-
ditions for � to be stabilizable:

� 2 S ) 8n 2 f2; . . . ; dg: Tr½�n�1Dð�Þ� ¼ 0: (4)

Denoting by Sn the set of states that fulfill Eq. (4) for fixed
n, we have S � T

n Sn. For states with nondegenerate
eigenvalues, criterion (4) is also sufficient [9], and hence
S ¼ T

n Sn. Note that this hierarchical characterization of
S does not require reference to the stabilizing Hamiltonian
H, in contrast to definition (3). Given a stabilizable state
� 2 S, however, it is straightforward to derive the corre-
sponding H from Eq. (2), based on the spectral decom-
position � ¼ P

���j�ih�j:

H ¼ X

�;�:�����

ih�jDð�Þj�i
�� � ��

j�ih�j: (5)

To demonstrate the viability of our method, we first
discuss the case of a single qubit. There, one finds an
intuitive geometric representation of S. Since d ¼ 2,
Eq. (4) imposes merely a single constraint (n ¼ 2).
In terms of the Bloch vector ~r ¼ Tr½� ~��, this constraint
defines a quadric hypersurface in the Bloch ball:

~r 2 S ) ~rðD~rþ ~dÞ ¼ 0: (6)

Here, the 3� 3 matrix ðDÞij ¼ Tr½�iDð�jÞ� and the vec-

tor ð ~dÞi ¼ Tr½�iDð1Þ� characterize the dissipator in Bloch
notation. According to Eq. (6), a state ~r is stabilizable, if

(and only if [10]) the dissipative flux D~rþ ~d is orthogonal
to ~r, i.e., if it has no radial component.

Specifically, we consider a qubit exposed to the three
most common incoherent processes: decay of the excited
state at rate ��, absorption from the ground state at rate
�þ, and dephasing between the ground and excited states

at rate �d. Experimental realizations of this scenario
include both atomic and solid-state two-level systems,
such as trapped ions [11], superconducting qubits [12], or
color centers in diamond [13]. Specifically, in the latter
case, the incoherent processes are triggered by a nuclear
spin bath, resulting in typical incoherent rates in the kHz
regime [14].
With these particular incoherent processes, S is the

surface of a spheroid [8], with the polar axis pointing
in the z direction; cf. Fig. 1. The polar and equatorial
diameter depend on the incoherent rates. The optimal
stationary state with respect to an arbitrary objective
Oð ~rÞ is now conveniently determined by maximizing
over the surface of this spheroid; e.g., one may consider
the coherence C ¼ 2jh0j�j1ij between the ground and
excited states. In Bloch notation, this objective corre-
sponds to the distance to the z axis; see Fig. 1. Hence,
the optimal coherence equals the equatorial semiaxis of

the spheroid, yielding ��=2�, with�¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þð�þ=2þ�dÞ
p

and �� ¼ �� � �þ. According to Eq. (5), the corre-
sponding Hamiltonian reads H� ¼ �ð�=2Þ�y. It can be

realized, e.g., by resonantly driving the qubit with a Rabi
frequency � [15].
As a higher-dimensional example, we consider two

qubits (d ¼ 4). The stabilizable states S then lie in the
intersection of three hypersurfaces S2, S3, and S4.
Similarly to a single qubit, one can represent � by a
fifteen-dimensional Bloch vector ~r [16,17]. The lowest
order constraint (n ¼ 2) can then be cast into the same
form as Eq. (6), defining again a quadric surface. The
higher order constraints for n ¼ 3, 4, however, lead to
polynomial expressions of the third and fourth degree in
~r. Therefore, instead of determining the optimal state in S
directly, it is favorable to determine the optimal state ~r� in
S2 first and then to verify that ~r� lies also in S. If so, it must
be the optimum in S, since S � S2. If not, the procedure
provides an upper bound for the optimal value in S.
Relevant target properties for two qubits address, e.g.,

their entanglement. The most detrimental situation is then

FIG. 1 (color online). Bloch representation of the set S of
stabilizable states [surface of the orange (dark shaded) spheroid]
for a single qubit, subject to spontaneous decay, excitation, and
dephasing. The respective rates ��, �þ, and �d determine the
shape of S. (a) For spontaneous decay only, the optimal sta-
tionary state ~r� with respect to the coherence C (i.e., the distance
to the z axis) reaches C ¼ 1=

ffiffiffi

2
p

. (b) With finite �þ and �d, the
ellipsoid is contracted, reducing the optimal value of C.
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certainly encountered when the incoherent processes act
locally on both qubits. Therefore, we exclusively consider
qubits undergoing (individual) spontaneous decay at rate
��, as encountered in the experimental scenarios men-
tioned above for a single qubit.

As a specific entanglement objective, we study the
fidelityF ð�Þ ¼ h�þj�j�þiwith respect to the maximally

entangled Bell state j�þi ¼ ðj01i þ j10iÞ= ffiffiffi

2
p

. It is rele-
vant, e.g., in teleportation protocols [18]. Its optimization
over S2 can be carried out analytically, yielding the
optimal stationary state

�� ¼ ð1=2Þj00ih00j þ ð1=2Þj�þih�þj; (7)

with F ð��Þ ¼ 1=2. The Hamiltonian Hð�;�Þ ¼
1 � ð��z þ ��xÞ þ ð��z þ ��xÞ � 1� 2�ð�þ � �� þ
�� � �þÞ stabilizes �� in the limit of �=�� ! 1 and
�=� ! 1 [19]. This Hamiltonian is readily realized in
various experimental setups; in particular, the interaction
term describes an excitation hopping mechanism, realiz-
able with trapped ions [1], superconducting circuits [20],
dipole-dipole interactions between excitons [21,22], color
centers in diamond [23], and Rydberg atoms [24,25].

Another relevant two-qubit objective is the entangle-
ment measure concurrence Eð�Þ [26]. In contrast to the
fidelity, it does not favor a specific state, assigning full
concurrence E ¼ 1 to all maximally entangled states. Since
Eð�Þ is not linear in �, however, its optimization cannot be
treated analytically. Numerical optimization in S2 reveals
that the optimal state coincides with the fidelity-optimal
state �� of Eq. (7), yielding Eð��Þ ¼ 1=2. This is plausible,
since a high Bell state fidelity typically implies strong
entanglement. With respect to concurrence, however, ��
is not the unique optimum; e.g., Eq. (7) with �þ replaced
by �� is stabilizable with concurrence 1=2, as well.

These results clearly indicate the possibilities and limi-
tations of coherent control of open systems: While we
proved the impossibility of exceeding the fifty-fifty mix-
ture (7) of the deexcited state and a maximally entangled
Bell state, E ¼ 1=2 is still significantly higher than the
average concurrence E ¼ 0:18 of typical stationary states,
as we verified by a statistical sampling of Hamiltonians.

Periodic control Hamiltonians.—So far, we have devel-
oped a method to determine the static Hamiltonian H
that upholds the optimal amount of an objective O in the
stationary state. We now extend these concepts to the
envisaged, substantially more general case of periodic
control Hamiltonians HðtÞ ¼ Hðtþ TÞ. Since this com-
prises static Hamiltonians as a special case, one generally
expects this additional freedom in control to improve the
optimization results.

Specifically, our aim is to determine periodic

Hamiltonians HðtÞ which optimize �O¼1=T
R

T
0Oð�acðtÞÞdt,

i.e., the time average of the objective O in the asymptotic

cycle �acðtÞ. To this end, we optimize �O in the set A of
stabilizable cycles, comprising all periodic trajectories

�ðtÞ ¼ �ðtþ TÞ (with arbitrary period T) for which a
periodic HðtÞ exists such that �ðtÞ solves the master
equation (1). Criterion (4) is then generalized to

8t8n: Trf�n�1ðtÞD½�ðtÞ�g ¼ 1

n
@t Tr½�ðtÞn�; (8)

which holds for any f�ðtÞg 2 A. Equation (8) reflects
the fact that only the dissipative term Dð�Þ can change the
spectrum of � and thus its spectral moments Tr½�n�.
As before, criterion (8) is also sufficient for f�ðtÞg 2 A,
if �ðtÞ has nondegenerate eigenvalues for all t. The
Hamiltonian HðtÞ stabilizing a given cycle in A is found
analogously to Eq. (5).
E.g., for the purity p (i.e., n ¼ 2), Eq. (8) implies that a

consistent cycle must equally probe regions of the state
space where the purity flux fð�Þ � Tr½�Dð�Þ� of the
dissipator is positive and regions where it is negative.
The regions of positive and negative purity flux are sepa-
rated by the hyperplane of vanishing flux, i.e., by the set S2

introduced in the discussion of the static case. Hence, any
cycle must intersect S2 an even number of times (at least
twice). Moreover, no cycle can explore regions where the
purity is larger than the maximal purity in S2 [27].
It is again instructive to consider a single qubit first.

A cycle f�ðtÞ:t 2 ½0; TÞg is then represented by a closed
trajectory f ~rtg in the Bloch ball, and stabilizable cycles
are characterized by criterion (8) with n ¼ 2, reading

~rtðD~rt þ ~dÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�fð~rtÞ

¼ 1

2
@tj~rtj2

|fflfflffl{zfflfflffl}

� _pð ~rtÞ

: (9)

It reflects the fact that the time evolution of the purity
p ¼ Tr½�2� � ðj~rj2 þ 1Þ=2 is exclusively governed by
the radial part fð ~rÞ of the dissipator.
While an optimization over all stabilizable cycles is

certainly unfeasible, the problem can be reduced to the
tractable class of two-point cycles (TPCs), based on the
following argument: Any cycle undergoes subsequent
stages of strictly monotonic purity gain and loss. Without
loss of generality, we consider cycles that consist of two
stages, intersecting S2 twice; general cycles reduce to this
case. To each point ~rþp in the purity-increasing stage

[fð~rþp Þ> 0], one can assign a point ~r�p of equal purity p

in the purity-decreasing stage [fð ~r�p Þ< 0]. Hence, the

cycle can be parametrized by p; see Fig. 2. Denoting by
p0 (p1) its minimal (maximal) purity and using Eq. (9), we

find that the objective �O for an arbitrary cycle is majorized
by a TPC

�O ¼
R

p1
p0

�

Oð ~rþp Þ
jfð~rþp Þj þ

Oð~r�p Þ
jfð~r�p Þj

�

dp
R

p1
p0

�

1
jfð~rþp Þj þ 1

jfð~r�p Þj
�

dp
	 max

p

�OTPCð ~rþp ; ~r�p Þ: (10)

Here, �OTPC defines the time-averaged objective of a TPC:
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�O TPCð ~rþp ; ~r�p Þ ¼
Oð~rþp Þjfð ~r�p Þj þOð ~r�p Þjfð ~rþp Þj

jfð ~rþp Þj þ jfð~r�p Þj : (11)

In Eq. (10), we used the estimate
R

b
a gðxÞdx=

R

b
a wðxÞdx 	

maxxgðxÞ=wðxÞ, holding for any positivewðxÞ and arbitrary
gðxÞ. The cycle that achieves �OTPCð~rþp ; ~r�p Þ comprises only

two points ~rþp and ~r�p of equal purity p, lying on different

sides of the hyperplane S2. To see this, one realizes that the
(infinitesimal) purity �p is lost while residing for a dwell
time �t� at ~r�p . To close the cycle, this purity �p must be

regained during the dwell time �tþ at ~rþp . Since the ratio

of these dwell times is inverse to the ratio of the respective
purity fluxes

�tþ

�t�
¼ð9Þ�p=jfð~r

þ
p Þj

�p=jfð~r�p Þj ¼
jfð~r�p Þj
jfð~rþp Þj ; (12)

the time average �O of the TPC is given by Eq. (11). The
TPC rapidly jumps back and forth between ~rþp and ~r�p via

purity-preserving, unitary ‘‘kicks’’ generated by suitable,
ideally �-shaped pulses HðtÞ. In conclusion, Eq. (10)
reflects the important result that the search for the optimal
asymptotic cycle can be restricted to TPCs, simplifying
tremendously the original optimization over all closed
trajectories that obey Eq. (9).

To exemplify this reduction, we consider again the
coherence C of a single qubit undergoing the same inco-
herent processes as before (with rates ��, �þ, and �d).
Because of symmetry, the most general TPC is then pa-
rametrized by two azimuthal angles and the common
purity p, and it is constrained by fð ~rþp Þ> 0, fð~r�p Þ< 0.

In a numerical optimization of �OTPCð ~rþp ; ~r�p Þ, one finds that
for any combination of the incoherent rates, the optimal
TPC f~rþ� ; ~r�� g degenerates to a single point, namely, the
optimal stationary state ~r� for static Hamiltonians (marked
in Fig. 1). Remarkably, this implies that no periodic
Hamiltonian HðtÞ beats the optimal static Hamiltonian

H�. This is, however, a peculiarity of our choices of
objective and dissipator and does not hold in general.
The same strategy can be applied beyond a single

qubit. Similar to the static case, one obtains an upper bound
for the optimum in A by focusing on the lowest-order set
A2, since A � A2. One can then again restrict the
investigation to TPCs, rendering a numerical optimization
feasible. In our two-qubit example with spontaneous
decay only, we find that the time-averaged concurrence
�E ¼ 1=T

R

T
0 E½�ðtÞ�dt never exceeds the optimal static

result Eð��Þ ¼ 1=2. This value decreases in the presence
of finite absorption ð�þ > 0Þ and/or dephasing ð�d > 0Þ,
and it never outperforms the static optimum.
Conclusion.—We developed a method to characterize

the asymptotic states of open quantum systems in terms
of the dynamical constraints imposed by the dissipator.
It allows us to access the optimization of arbitrary perio-
dically time-dependent coherent control without resorting
to the system Hamiltonian. In the static case, the method
leads to the characterization (4) of stabilizable states,
reflecting the unitary compensability of the dissipator.
Based on that, we showed that in the general periodic
case, optimizations can be restricted to the significantly
simplified class of two-point cycles. This way, optimiza-
tion problems with respect to arbitrary objectives can be
addressed that were previously prohibited by the vast
range of conceivable asymptotic cycles. To demonstrate
our method, we determined the maximum asymptotic
two-qubit entanglement that can be preserved by periodic
coherent control in the presence of a dissipation-inducing
environment. Other relevant applications include, e.g.,
optimal energy transport in quantum networks [28] or the
minimization of particle loss in Bose-Einstein condensates
[29]. Altogether, our method not only deepens our con-
ceptual understanding of the working principles in open
quantum systems but also opens the prospect to treat
hitherto intractable optimization problems.
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