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Scattering is an important phenomenon which is observed in systems ranging from the micro- to

macroscale. In the context of nuclear reaction theory, the Heidelberg approach was proposed and later

demonstrated to be applicable to many chaotic scattering systems. To model the universal properties,

stochasticity is introduced to the scattering matrix on the level of the Hamiltonian by using random

matrices. A long-standing problem was the computation of the distribution of the off-diagonal scattering-

matrix elements. We report here an exact solution to this problem and present analytical results for

systems with preserved and with violated time-reversal invariance. Our derivation is based on a new

variant of the supersymmetry method. We also validate our results with scattering data obtained from

experiments with microwave billiards.
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A large part of our knowledge about quantum systems
comes from scattering experiments. Even in classical
wave systems, observables can often be traced back to a
scattering process [1]. Important examples stem from
nuclear, atomic and molecular physics, mesoscopic ballis-
tic devices, and even from classical wave systems as, e.g.,
microwave and elastomechanical billiards, as well as from
wireless communication [1–31]. Accordingly, the investi-
gation of scattering phenomena has been a subject of major
interest from both theoretical and experimental points of
view. Here, we focus on the universal features of chaotic
scattering systems.

The quantity of interest is the scattering matrix
(S matrix) which relates the asymptotic initial and final
states, and owing to the flux conservation requirement is
unitary. The S-matrix elements are given in terms of the
Hamiltonian H describing the scattering center [6,16] by

SabðEÞ ¼ �ab � i2�Wy
a GðEÞWb; (1)

where the inverse of the resolvent GðEÞ reads

G�1ðEÞ ¼ E1N �H þ i�
XM
c¼1

WcW
y
c : (2)

The coupling vectors Wc account for the interaction
between the internal states of H and the M open channel
states labeled c ¼ 1; . . . ;M where the full system resides
asymptotically before, respectively, after the scattering
event. This ansatz yields the most general description of
any scattering process in which an interaction zone and
scattering channels can be identified. Without loss of gen-
erality, we may restrict ourselves to a diagonal average S
matrix [32], that is, to orthogonal coupling vectors, viz.,

Wy
c Wd ¼ ð�c=�Þ�cd; c, d ¼ 1; . . . ;M [9,16].

The chaoticity of the dynamics in the scattering center is
taken into account by assuming that H is a random matrix.
This is referred to as the Heidelberg approach [6], as
distinguished from the Mexico approach [7,8], where sto-
chasticity is introduced in the Smatrix itself. In view of the
universality conjecture [33], the HamiltonianH is modeled
by the Gaussian ensemble of N � N random matrices with
the distribution [5,34,35], P ðHÞ/ expð�ð�N=4v2ÞtrH2Þ.
Here, v2 fixes the energy scale and the index � character-
izes the symmetry class, i.e., the invariance properties of
the Hamiltonian. We focus on the cases � ¼ 1 (Gaussian
orthogonal ensemble, GOE) and � ¼ 2 (Gaussian unitary
ensemble, GUE) which apply to systems with, respec-
tively, preserved and violated time-reversal (T ) invariance
[5,34,35], the former being rotationally invariant as well.
The universal spectral properties of closed chaotic systems
deduced from these ensembles are by now well understood
[5]. Those of the effective Hamiltonian associated with a
chaotic scattering process, which includes H and the cou-
pling to the exterior have been derived, e.g., in [16]. Its
complex eigenvalues can be extracted from the measured
resonance spectra [4,36] in general, only in the regimes of
isolated and weakly overlapping resonances. Accordingly,
a description of the universal properties of the S matrix
itself is indispensable.
In their pioneering work [9], using the supersymmetry

method [37], Verbaarschot et al. calculated the energy cor-
relation function of two S-matrix elements. Further progress
in this direction was made in [10] where three- and four-
point S-matrix correlation functions were evaluated. While
these provide rich information about the scattering process,
a full statistical description requires the determination of
the distributions of the S-matrix elements. Their knowledge
yields information about all their moments and is highly
desirable also from an experimental viewpoint [4]. The
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distributions and higher moments have been known hitherto
only in the limit of a large numberM of open channels and a
vanishing average Smatrix, i.e., in the Ericson regime [4,11]
or in a high-loss environment [29,30]. There the real and
the imaginary parts of the S-matrix elements are Gaussian
distributed. Otherwise the deviations from this behavior are
significant due to the unitarity of the S matrix [4,10,38,39].
The complexity involved in the calculations of the correla-
tion functions [9,10,40] indicates that those of the distribu-
tions of the S-matrix elements constitute a challenging task.
However, this was partially accomplished in [17] where the
distribution of the diagonal S-matrix elements was derived.
Moreover, in [18], the statistics of transmitted power, viz.
jGnmðEÞj2, n � m, was calculated. These results have been
verified in microwave experiments [19–26]. In the present
Letter, we provide analytical results for the distributions of
the off-diagonal S-matrix elements which could not be
computed with the well-established methods [9,10,17].
The novelty of our approach lies in that a nonlinear sigma
model is constructed based on the characteristic function
associated with the distributions which is the generating
function for the moments. In contrast, the standard super-
symmetry approach starts from the generating function for
the S-matrix correlations.

We introduce the notation }sðSabÞ, with s ¼ 1, 2 to
refer to the real and imaginary parts of Sab, respectively.
Thus, Eq. (1) yields for the off-diagonal (a � b) elements

}sðSabÞ ¼ �ðð�iÞsWy
aGWb þ isWy

bG
yWaÞ: (3)

Determining distributions for }sðSabÞ, which we denote
by PsðxsÞ, involves the nontrivial task of performing an
ensemble average,

PsðxsÞ ¼
Z

d½H�P ðHÞ�ðxs �}sðSabÞÞ; s¼ 1;2: (4)

We instead first compute the corresponding characteristic
function,

RsðkÞ ¼
Z

d½H�P ðHÞ expð� ik}sðSabÞÞ; (5)

and then obtain PsðxsÞ as the Fourier transform of RsðkÞ,

PsðxsÞ ¼ 1

2�

Z 1

�1
dkRsðkÞ expðikxsÞ: (6)

Defining the 2N-component vector W and the 2N � 2N
matrix As as

W ¼ Wa

Wb

" #
; As ¼

0 ð�iÞsG
isGy 0

" #
; (7)

we rewrite RsðkÞ as

RsðkÞ ¼
Z

d½H�P ðHÞ expð�ik�WyAsWÞ: (8)

In this form, the ensemble average can not be performed,
because As contains the inverse of H. To carry it out, we

map the statistical model to superspace. We introduce the
2N vectors zT ¼ ½zTa ; zTb � and �T ¼ ½�Ta ; �Tb � consisting of

complex commuting and anticommuting (Grassmann) var-
iables, respectively. The supervector is constructed in the
usual manner [41] as �T ¼ ½zT; �T�. Using these vectors,
and multivariate Gaussian-integral results, we recast the
characteristic function as

RsðkÞ ¼
Z

d½�� exp
�
i

2
ðWy�þ�yWÞ

�

�
Z

d½H�P ðHÞ exp
�

i

4�k
�yA�1

s �

�
: (9)

Here A�1
s ¼ 12 � A�1

s , and Wy ¼ ½Wy; 0� is a 4N vector.
The ensemble average can now be done, leading to an
enormous reduction in the degrees of freedom. To facilitate
it we block diagonalize A�1

s by the transformations

z ! Tþz; zy ! zy; � ! 2

�
T��; �y ! �y;

T� ¼ 0 �ð�iÞs1N

�is1N 0

" #
:

(10)

Here, we have used the fact that the complex quantities
zð�Þ and zyð�yÞ are independent of each other. The

Jacobian of the transformation is ð�1ÞN22ð��2ÞN . After
the application of Eq. (10) we have to distinguish between
the two cases.
For � ¼ 2 we obtain

RsðkÞ ¼ ð�1ÞN
Z

d½�� exp
�
i

2
ðUy

s�þ�yWÞ
�

�
Z

d½H�P ðHÞ exp
�

i

4�k
�yA�1�

�
; (11)

with the 4N vector Uy
s ¼ ½�isWy

b ; ð�iÞsWy
a ; 0; 0� and

matrix A�1 ¼ diag½�ðG�1Þy; G�1;�ðG�1Þy;�G�1�,
and �T ¼ ½zT; �T� as above.
For � ¼ 1, we decompose the 2N vector z into its real

and imaginary parts x and y (not to be confused with x1
and x2) to construct a 4N vector. In addition, we symme-
trize the vector � using ��a , ��b along with �a, �b, thereby
doubling its size as well. The associated Jacobian
equals 22N and, thus, cancels that of the transformation

Eq. (10). The 8N supervector is given as �y ¼
½xTa ; yTa ; xTb ; yTb ; �ya ;��Ta ; �

y
b ;��Tb � and

RsðkÞ ¼ ð�1ÞN
Z

d½�� expði�yVsÞ

�
Z

d½H�P ðHÞ exp
�

i

4�k
�yA�1�

�
: (12)

In this case, VT
s ¼ ½isw�

s ;�isþ1wþ
s ; w

þ
s ; iw

�
s ; 0; 0; 0; 0�,

where w�
s ¼ ðð�iÞsWT

a �WT
b Þ=2, and A�1 ¼

diag½�ðG�1Þy; G�1;�ðG�1Þy;�G�1� � 12. Since the
matrix A�1 is block diagonal in both Eqs. (11) and (12),
the ensemble averaging is now straightforward.

PRL 111, 030403 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JULY 2013

030403-2



Next, we use the Hubbard-Stratonovitch identity [37,41]
to map the integral over the 8N=� supervector �
to a matrix integral in superspace involving an
8=�-dimensional supermatrix � of appropriate symmetry.
This yields

RsðkÞ ¼
Z

d½�� exp
�
�r str�2 � �

2
str ln�� i

4
Fs

�
;

� ¼ �E � 1N þ i

4k
L � XM

c¼1

WcW
y
c ;

�E ¼ �� E

4�k
18=�;

(13)

with str denoting the supertrace. Here r ¼
ð4��2k2NÞ=v2, and L ¼ diagð1;�1; 1;�1Þ � 12=�. Fs

equals VT
sL

�1=2��1L�1=2Vs for � ¼ 1, and

Uy
sL�1=2��1L�1=2W for � ¼ 2 with L ¼ L � 1N . The

supersymmetric representation, Eq. (13), constitutes one of
our key results.

The orthogonality of Wc leads to

str ln� ¼ N str ln�E þ XM
c¼1

str ln

�
18=� þ i�c

4�k
��1

E L

�
;

��1 ¼ ��1
E � 1N � ��1

E � XM
c¼1

�

�c

WcW
y
c

þ XM
c¼1

�ðcÞ � �

�c

WcW
y
c ; (14)

with �ðcÞ ¼ ð�E þ i�c=ð4�kÞLÞ�1. Furthermore, Fs

equals a linear combination of matrix elements of �ðcÞ
multiplied with �c, where c ¼ a, b. In Eq. (14), the first
term is of orderN while the rest is of order 1. Thus, in order
to perform the limitN ! 1, we may apply the saddle point
approximation. This leads to a separation of � into
Goldstone modes �G and massive modes [41]. The inte-
grals over the latter, being Gaussian ones, can be readily
done and yield unity. Therefore, we are left with an
expression involving only the Goldstone modes, and
consequently, our sigma model reads

RsðkÞ ¼
Z

d�ð�GÞ exp
�
� i

4
Fs

�

� YM
c¼1

sdet�ð�=2Þ
�
18=� þ i�c

4�k
��1

E L

�
; (15)

with sdet denoting the superdeterminant and � replaced
by �G in all the ingredients of Eq. (13). In order to perform
the remaining integrals, we proceed as in [9,41] and
express �G in terms of an 8=�-dimensional supermatrix
Q as �G ¼ ðE=8�kÞ18=� � ð�=8�kÞQ withQ2 ¼ �18=�.

Here, � ¼ ð4v2 � E2Þ1=2 with �=ð2�v2Þ identified as the
celebrated Wigner semicircle. We use the parametrization
of Q as in [9,16,42]. For � ¼ 2, it involves pseudoeigen-
values 	1 2 ð1;1Þ, 	2 2 ð�1; 1Þ, angles 
1, 
2 2
ð0; 2�Þ, and four Grassmann variables. For � ¼ 1, we

have three pseudoeigenvalues 	0 2 ð�1; 1Þ, 	1, 	2 2
ð1;1Þ, two O(2) angles 
1, 
2 2 ð0; 2�Þ, three SU(2)
variables m, r, s 2 ð�1;1Þ, and eight Grassmann varia-
bles. The product over the superdeterminants in Eq. (15)
involves the pseudoeigenvalues only, viz.,

F O ¼ YM
c¼1

gþc þ 	0

ðgþc þ 	1Þ1=2ðgþc þ 	2Þ1=2
for � ¼ 1;

F U ¼ YM
c¼1

gþc þ 	2

gþc þ 	1

for � ¼ 2:

Here g�c ¼ ðv2 � �2
cÞ=ð�c�Þ. gþc is related to the trans-

mission coefficient Tc ¼ 1� jSccj2 as gþc ¼ 2=Tc � 1 [9].
The exponential part in Eq. (15) also involves other
variables and is quite complicated for � ¼ 1.
For � ¼ 2, the integrals over the Grassmann variables

and the angles can be performed and we obtain the same
distribution for the real and imaginary parts,

RsðkÞ ¼ 1�
Z 1

1
d	1

Z 1

�1
d	2

k2

4ð	1 � 	2Þ2

�F Uð	1; 	2Þðt1at1b þ t2at
2
bÞJ0

�
k

ffiffiffiffiffiffiffiffi
t1at

1
b

q �
; (16)

where JnðzÞ represents the nth order Bessel function of the
first kind, and tjc¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j	2

j �1j
q

=ðgþc þ	jÞ, j¼1, 2. The ‘‘1’’

in Eq. (16) is an Efetov-Wegner contribution [37] which is
essential for the correct normalization, Rsð0Þ ¼ 1. The
distribution function is obtained using Eq. (6) as

PsðxsÞ¼@2fðxsÞ=@x2s ;

fðxÞ¼ x�ðxÞþ
Z 1

1
d	1

Z 1

�1
d	2

F Uð	1;	2Þ
4�ð	1�	2Þ2

�ðt1at1bþ t2at
2
bÞðt1at1b�x2Þ�1=2�ðt1at1b�x2Þ: (17)

Here, �ðuÞ is the Heaviside function. The distributions
being identical for s ¼ 1, 2 in this case, the phases have
a uniform distribution and the joint density of the real and

the imaginary parts depends on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
only. This facil-

itates the calculation of the distribution of their moduli [43]
and those of the cross sections which are given by the
squared moduli [4]. This is of particular relevance for the
experiments where only these are accessible.
For � ¼ 1, the calculation involved is rather cumber-

some. Nevertheless, we managed to perform all but four
integrals. We have

R1ðkÞ ¼ 1þ 1

8�

Z 1

�1
d	0

Z 1

1
d	1

Z 1

1
d	2

�
Z 2�

0
dcJ ð	0; 	1; 	2ÞF Oð	0; 	1; 	2Þ

X4
n¼1

�nk
n;

(18)

where
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J ¼ ð1� 	2
0Þj	1 � 	2j

2ð	2
1 � 1Þ1=2ð	2

2 � 1Þ1=2ð	1 � 	0Þ2ð	2 � 	0Þ2
:

The �’s entering Eq. (18) are functions of

pj
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j	2

j � 1j
q
8ðgþc þ 	jÞ ; j ¼ 0; 1; 2; p�

c ¼ p1
c � p2

c;

qþc ¼ 1

8

�
E

�
þ ig�c

��
1

gþc þ 	1

þ 1

gþc þ 	2

� 2

gþc þ 	0

�
;

q�c ¼ 1

8

�
E

�
þ ig�c

��
1

gþc þ 	1

� 1

gþc þ 	2

�
; (19)

and of the complex conjugate of q�c , r�c ¼ ðq�c Þ�, and
the quantities ! ¼ 2

ffiffiffiffiffiffiffi
XY

p
, l ¼ X=Y, m ¼ Y=X, where

X ¼ 2pþ
a þ q�a e�i2c þ r�a ei2c and Y ¼ 2pþ

b � q�b e
i2c �

r�b e
�i2c . It can be verified that !2 is real and takes values

from the interval [0, 1]. The �’s are given as

�1 ¼ �11J1ðk!Þ; �2 ¼ �21J0ðk!Þ þ �22J2ðk!Þ;
�3 ¼ �31J1ðk!Þ þ �32J3ðk!Þ;
�4 ¼ �41J0ðk!Þ þ �42J2ðk!Þ þ �43J4ðk!Þ;
with the entries �ij given in the Supplemental Material

[44]. R2ðkÞ is obtained by multiplying�i to the right-hand
side of the expressions for q�c in Eq. (19), and changing r�c
accordingly. The distribution is obtained as

PsðxsÞ ¼ �ðxsÞ þ @f1
@xs

þ @2f2
@x2s

þ @3f3
@x3s

þ @4f4
@x4s

;

f1 ¼ h�11xs=!i; f2 ¼ �h�21 þ �22ð1� 2x2s=!
2Þi;

f3 ¼ �h½�31 þ �32ð3� 4x2s=!
2Þ�xs=!i;

f4 ¼ h�41 þ �42ð1� 2x2s=!
2Þ

þ �43ð1� 8x2s=!
2 þ 8x4s=!

4Þi: (20)

Here the angular brackets represent the following:

hhi ¼ 1

16�2

Z 1

�1
d	0

Z 1

1
d	1

Z 1

1
d	2

�
Z 2�

0
dcJ ð	0; 	1; 	2ÞF Oð	0; 	1; 	2Þ

� 2hð!2 � x2sÞ�1=2�ð!2 � x2sÞ:
Different results for the real and imaginary parts
explain their unequal deviations from a Gaussian behavior
which was observed in [38,39]. Details of the super-
symmetry calculations and further results will be given
elsewhere [43].

We evaluated Eqs. (16) and (17) numerically using
MATHEMATICA [45]. The corresponding MATHEMATICA

codes are included in the Supplemental Material [44]. In
Fig. 1, for � ¼ 2, we compare the analytical results for
characteristic functions and distributions with simulations

obtained with an ensemble of 50 000 random matrices
H of dimensions 200� 200 from the GUE [5,35].
The agreement is excellent. Unfortunately, there were no
experimental data available for this case because a com-
plete T invariance violation could not be achieved. For
� ¼ 1, we found that RsðkÞ is best evaluated using the
Efetov variables �0, �1, �2 (0< �0 <�, 0< �1;2 <1)

[37]. These are related to the 	’s as 	0 ¼ cos�0 and 	1;2 ¼
coshð�1 � �2Þ. The numerical evaluation of the fourth
derivative needed for the computation of PsðxsÞ is not
feasible. Instead, we determined them with the help of
Eq. (6), considering a cutoff for k. This approach works
well for a sufficiently flat distribution, whereas, if it is
highly localized, it is advantageous to consider the
corresponding characteristic function instead. We found
that the analytical results converge to the expected
Gaussian distributions in the Ericson regime for both �
values [43].
We tested our analytical results for � ¼ 1 with experi-

mental data. To realize a chaotic scattering system, a
microwave billiard with the shape of a classically chaotic
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FIG. 1 (color online). Comparison of analytical and simulation
results for � ¼ 2: (a) characteristic functions (b) distributions
of the real and the imaginary parts of Sab for the choice of
parametersM¼3, E¼0:25, v¼1, �1 ¼ 0:8, �2¼1:0, �3 ¼ 1:2,
a ¼ 1, b ¼ 2.
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FIG. 2 (color online). Characteristic functions R1 and R2

corresponding to the real and the imaginary parts of S12 for
� ¼ 1. Comparison between the analytical results and
the microwave experiment data for the frequency range
10–11 GHz [24–26].
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tilted-stadium billiard [24–26,46] was chosen and the reso-
nator modes were coupled to the exterior via two antennas
attached to it. An ensemble of several chaotic systems was
obtained by introducing a small scatterer into the micro-
wave billiard and moving it to six different positions [47].
For the determination of the S-matrix elements, a vector
network analyzer coupled microwave power into and out of
the resonator via the antennas. The frequency range was
chosen such that only the vertical component of the electric
field strength was excited. Then, the Helmholtz equation is
mathematically equivalent to the Schrödinger equation of
the quantum tilted-stadium billiard. The S-matrix elements
were measured in steps of 100 kHz in a range from 1 to
25 GHz and the fluctuation properties of the S-matrix
elements were evaluated in frequency windows of 1 GHz
in order to guarantee a negligible secular variation of the
coupling vectors Wc. More details concerning the experi-
mental setup and the measurements are provided in
[24,25]. In Figs. 2 and 3, we test the analytical results
with experimental data for the frequency ranges 10–11
and 24–25 GHz, corresponding to a ratio of the average
resonance width � and average resonance spacing d,
�=d ¼ 0:234 and �=d ¼ 1:21, respectively. The agree-
ment is very good.

To conclude, we solved the long-standing problem of
deriving the full distribution of the off-diagonal S-matrix
elements valid in all regimes. We accomplished this task
by introducing a novel route to the sigma model based
on the characteristic function. We verified our analytical
results with numerical simulations and with experimental
data and found excellent agreements, and thus, presented
a new confirmation of the random matrix universality
conjecture.
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[40] H.-J. Stöckmann, J. Phys. A 35, 5165 (2002); T. Guhr and
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