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A generalized self-consistent field approach for polymer networks with a fixed topology is developed.

It is shown that the theory reproduces the localization of cross-links, which is characteristic for gels.

The theory is then used to study the order-disorder transition in regular networks of end-linked diblock

copolymers. Compared to diblock copolymer melts, the transition is shifted towards lower values of the

incompatibility parameter � (the Flory- Huggins parameter). Moreover, the transition becomes strongly

first order already at the mean-field level. If stress is applied, the transition is further shifted and finally

vanishes in a critical point.
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Polymers are macromolecules made of a large number
of structurally identical or similar subunits (monomers),
with local monomer interactions that tend to be weak
on the scale of the thermal energy kBT. In polymeric
materials, molecules typically have many interaction part-
ners. Therefore, these systems can often be described quite
satisfactorily by mean-field theories. In particular, the self-
consistent field (SCF) theory [1–6] is a powerful mean-
field approach for describing inhomogeneous polymer
melts and solutions. Originally developed as a theory for
interfaces between immiscible homopolymer phases [1], it
has now become a standard tool for studying phase tran-
sitions between block copolymer mesophases [7–9], the
self-organization of amphiphilic polymers in solution [10],
or the structure of polymer composite materials [11–13], to
name just a few examples. Numerous extensions have been
proposed that allow one to include, e.g., orientational order
[14], electrostatic interactions [15], dynamical processes
[16–19], or the effect of fluctuations [20–22].

Despite these successes, the SCF theory still suffers from
severe restrictions. Most prominently, it is limited to fluids.
Polymers are taken to have full translational freedom and,
consequently, the systems cannot sustain large shear stress
or elastic deformations. Complex fluids may respond elas-
tically to small stress to some extent, and this can be studied
by SCF methods [23,24], but they necessarily yield to large
stress. In reality, however, many materials of interest such
as rubber are irreversibly cross-linked, either chemically
or physically. Cross-linking is a popular strategy for stabi-
lizing composite materials or polymeric nanostructures.
While SCF approaches have been devised for describing
systems of reversibly cross-linked polymeric materials
[25–27], there exists so far no SCF theory for irreversibly
cross-linked polymer networks.

In this Letter, we propose a way to overcome this
limitation. We develop a SCF approach for irreversibly
cross-linked networks with fixed (quenched) topology.

As an application example, we then use the method
to study the phase behavior of symmetric cross-linked

diblock copolymers. Specifically, we address the question
of how cross-linking affects the order-disorder transition
(ODT), i.e., the transition between a disordered state and
an ordered microphase separated state. The microphase
separation in fluids of diblock copolymers has been studied
intensely by SCF methods [7–9]. According to mean-field
theory, melts of symmetric diblock copolymers undergo a
continuous microphase separation transition to an ordered
lamellar phase upon cooling. Fluctuations shift the transi-
tion and it becomes weakly first order [22,28,29]. Whereas
this is all well understood in polymer fluids, the situation in
cross-linked systems is less clear.
Most theoretical studies of microphase separation in

cross-linked polymer blends have focussed on situations
where a blend of incompatible A and B polymers is first
randomly cross-linked in a high-temperature homo-
geneous state and then cooled down. In a seminal paper,
de Gennes predicted a spinodal instability with respect
to microphase separation in such systems [30]. Several
authors have built on this idea and investigated the insta-
bility by experiment [31], theory [32–36], and simulation
[37,38]. The influence of random network forces on the
structure of the ordered state was investigated by elasticity
theories [39,40].
Here, we will consider a slightly different situation: We

will study a diblock copolymer network cross-linked in a
lamellar state, asking whether and how cross-linking
stabilizes the lamellar structure. In computer simulations,
Lay et al. [41] found that the lamellar order of loosely
cross-linked ordered diblock copolymer melts disappears
upon heating. We will investigate this phenomenon. More
specifically, we will consider a regular network of end-
linked diblock copolymers. Experimentally, the synthesis
of such ideal copolymer networks is coming within reach
[42], and simple phenomenological theories have been
devised to predict the expected microphase separation
[43,44]. A more refined SCF theory which can predict
the phase behavior of such systems based on molecular
parameters is thus clearly desirable.
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To introduce the general formalism of the new SCF
approach, we consider for simplicity a regular network
without dangling ends, with connecting polymer strands
made of different types of monomers � ¼ A; B; . . . . The
overall strand density is C. The system is defined by (i) the
topology of the network, i.e., the set of cross-links l and
linker connections hjki, (ii) the cross-link positions rj and

the conformations of linker strands, which we parametrize
by space curvesRjkðsÞwith s 2 ½0:1�, and (iii) the sequence
of monomers along the strands, described by characteristic

functions �ð�Þ
jk ðsÞ, with �ð�Þ

jk ðsÞ¼1 if the chain is occupied

by monomers of type � at the position s and �ð�Þ
jk ðsÞ ¼ 0

otherwise [
P

��
ð�Þ
jk ðsÞ � 1]. Strands are taken to be

Gaussian chains with polymerization index N and statistical
segment length b. The interaction between monomers is

defined by an interaction potential U½f�̂�g� which depends

on the local monomer fractions �̂�¼ð1=CÞPhjki
R
1
0ds�ðr�

RjkðsÞÞ�ð�Þ
jk ðsÞ. In the following, we will mainly consider

binary AB melts with Flory-Huggins interaction U ¼
C
R
drf�N�̂A�̂B þ ð�N=2Þð�̂A þ �̂B � 1Þ2g, where � is

the Flory-Huggins parameter and � is related to the inverse
compressibility of the melt. Here and in the following, the
energy units are chosen such that kBT ¼ 1. The partition
function of the whole system thus reads

Z ¼ Y
l

Z
drl

Y
hjki

Z
DRjk�ðrj �Rjkð0ÞÞ�ðrk �Rjkð1ÞÞ

� exp

�
�X

hmni

1

R2
g

Z 1

0
ds

�
dRmn

ds

�
2 þU½f�̂�g�

�
; (1)

where Rg ¼ b
ffiffiffiffiffiffiffiffiffi
N=6

p
is the radius of gyration of one strand.

After integrating out the cross-link degrees of freedom,
we recover the partition function of the classical Deam-
Edwards theory for networks [45–48]. In the present
approach, it will prove convenient to keep the cross-link
degrees of freedom explicitly.

We first derive a mean-field approximation for the
contributions of monomer interactions to the free energy
in a standard field-theoretic SCF manner [3]: The
chain conformations are decoupled by inserting identity

operators 1 / R
1 D��

R
i1DW�e

C
R

drW�ð����̂�Þ, whereR
1D�� and

R
i1 DW� denote functional integrals

over fluctuating fields ��ðrÞ and W�ðrÞ. This allows us

to rewrite the partition function in the form Z /Q
�

R
1D��

R
i1DW�

Q
l

R
drle

�F ½f��;W�;rlg�, with

F ¼U½f��g��C
X
�

Z
dr��W��

X
hjki

lnQjkðrj;rkÞ: (2)

Here the Qjkðr; r0Þ are single-chain partition functions of

the linker strands RjkðsÞ in the self-consistent field W�,

subject to the constraint that the ends are located at the
cross-link positions r and r0:

Qjkðr; r0Þ ¼
Z

DR
������Rð0Þ¼r

Rð1Þ¼r0
e�

R
1

0
ds�ð�Þ

jk
ðsÞW�ðRðsÞÞ: (3)

The SCF approximation consists of replacing the fluc-
tuating field integral by its saddle point; i.e., the free energy
is approximated by the minimum of F in Eq. (2) with
respect to the fields �� and W�. One obtains the set of
self-consistent SCF equations CW�ðrÞ¼�U=���ðrÞ and
��ðrÞ¼P

hjki�ln½Qjkðrj;rkÞ�=�W�ðrÞ. Efficient strategies
to evaluate Qjk and �� can be found in the literature [5].

The remaining task is to find a corresponding mean-field
approximation for the integration over the cross-link
degrees of freedom. This is done following an analogous
field-theoretic procedure. We define local cross-link distri-
bution operators p̂jðrÞ ¼ �ðr� rjÞ and insert identities

1 / R
1 Dpj

R
i1 Dhje

R
drhjðpj�p̂jÞ. The partition function

is thus rewritten as Z / Q
j

R
1Dpj

R
i1Dhje

�F½pj;hj�

with the new free energy functional

F ¼ U½f��g� � C
X
�

Z
dr��W�

�X
hiji

ZZ
drdr0pjðrÞpkðr0Þ lnQjkðr; r0Þ

�X
l

Z
drhlðrÞplðrÞ �

X
l

lnðN lÞ; (4)

with N l ¼
R
dre�hlðrÞ. The mean-field approximation

then again consists of carrying out a saddle point integra-
tion, i.e., minimizing F in Eq. (4) with respect to pj and hj.

This results in the mean-field equations

hjðrÞ ¼ �X
fkgj

Z
dr0pkðr0Þ ln½Qjkðr; r0Þ� (5)

pjðrÞ ¼ N �1
j e�hjðrÞ; (6)

where the sum
P

fkgj runs over the cross-links k that are

directly linked with j.
As a side note, we remark that the free energy expression

in Eq. (2) has the structure of a Hamiltonian for a lattice
model with sites j, continuous degrees of freedom rj, and

‘‘interactions’’ lnQjk. Thus, mean-field methods developed

for lattice models can be applied in the present problem as
well. The approximation derived above is equivalent to
the popular Bragg-Williams approximation [49] in a version
for continuous degrees of freedom. It yields the same
equations, (4)–(6). Other more sophisticated approxima-
tions such as the Bethe approximation [49] can be adopted
aswell.More details are found in the SupplementalMaterial
[50]. Unless stated otherwise, we will use Eqs. (4)–(6) here,
i.e., the Bragg-Williams approximation.
In the absence of any monomer interactions (phantom

networks), the mean-field equations (5) and (6) can be
solved analytically. For regular networks with equivalent
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cross-links, the cross-links are centered about their respec-
tive mean position Rj with a Gaussian distribution,

pjðrÞ ¼ R�d
g

ffiffiffiffiffiffiffi
f

4�

s d

exp

�
� f

4R2
g

ðr�RjÞ2
�
; (7)

where f is the functionality of the cross-link and d the
spatial dimension. Thus the theory reproduces the phenome-
non of cross-link localization on a scale of Rg, in agreement

with theories of the sol-gel transition in networks [46–48].
Interacting networks swell due to the excluded volume

interactions. As a result, the mean cross-link positions Rj

move apart. In incompressible materials, however, the
shape of the cross-link distribution is barely affected by
the swelling. Figure 1 shows numerical results for an
interacting network with square topology in two dimen-
sions (2D) [51] in the Bragg-Williams and the Bethe
approximation (equations are given in the Supplemental
Material [50]). The Bragg-Williams result is practically
indistinguishable from the prediction of Eq. (7).

Likewise, the cross-link distribution does not change if
the network is deformed elastically. Figure 2(c) (top panel)
shows the cross-link distribution for an (almost) incom-
pressible homopolymer network that has been stretched
considerably in one direction. It can be described almost
perfectly by Eq. (7). Specifically, we consider the network
‘‘unit cell’’ sketched in Fig. 2 with side length lz. In the
mechanically relaxed state, lz takes the equilibrium value

lz ¼ l� ¼ 2=
ffiffiffiffi
C

p
. If the cells are stretched to lz � l�, the

free energy per strand as a function of lz rises quadratically
according to F=nstrands � l2z=ð16R2

gÞ [see Fig. 2(b), case

�N ¼ 0], which corresponds to the behavior of phantom
networks of Gaussian chains. Incompressible homopoly-
mer networks behave very much like phantom networks.
Deviations only start to set in for strongly swollen net-
works with strand densities C below a crossover value
C� ¼ R�d

g (with the spatial dimension d), which is the

network equivalent of the overlap concentration in polymer
solutions [52].

This changes in networks of AB copolymers. We con-
sider the same (2D) square network as above [51], now

made of AB diblock copolymers which are end-linked
such that A ends join A and B ends join B [Fig. 2(a)].
By stretching the network in the z direction, an average
distance lz=2 is imposed between neighboring A and B
cross-links, which induces a separation between A-rich
and B-rich regions [Fig. 2(c)]. At �N ¼ 0, the free energy
rises monotonically as a function of lz as discussed above
(homopolymer case). As �N is increased, a minimum
at nonzero lz develops and gradually deepens [Fig. 2(b)].
This minimum dominates beyond �N ¼ 10:235, and the
network undergoes an order-disorder transition from a
disordered state (with lz ¼ l� � Rg) to a microphase sepa-

rated lamellar state with lamellar spacing lz ¼ 3:245Rg.

Compared to the noninteracting stretched structure at the
same lz, the stable lamellar state at the ODT is character-
ized by higher segregation, and by a narrower, more local-
ized cross-link distribution.
Comparing the ODT in the network to the ODT in

copolymer melts, one notices striking dissimilarities.
First, the transition is strongly first order already at the
mean-field level. Second, stretching the system stabilizes
the ordered phase. Free energy curves such as those shown
in Fig. 2(b) can be used to construct a phase diagram as
a function of the average force Fz acting on a strand. The
result is shown in Fig. 3. As the system is stretched, the
first order transition gradually moves to lower �N until it
finally ends in a critical point at ð�NÞc ¼ 3. The critical
point in the network is thus found at much lower �N than
the critical point in the melt [ð�NÞc ¼ 10:425]. However,
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FIG. 1 (color online). Distribution of individual cross-links
about their average position in a 2D melt of almost incompress-
ible end-linked homopolymers (�N ¼ 100) at polymer density
CR2

g ¼ 4, calculated within the Bragg-Williams approximation

(a) and the Bethe approximation (b). The network has the
topology of a square lattice [see inset in (b)]. The distribution
in (a) is indistinguishable from Eq. (7) with f ¼ 4 and d ¼ 2.
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FIG. 2 (color online). Properties of a stretched AB diblock
copolymer network in the 2D square topology sketched in
(a) at �N¼100 and strand density CR2

g!1. The case �N¼0

also describes homopolymer networks. (b) Free energy per
strand versus imposed cell length lz for different values of �N
as indicated. Arrows mark lz ¼ 3:245Rg. (c) Composition profile

(�A;B: dashed and dot-dashed lines) and cross-link distribution

profile (P: dotted and shaded curve) in arbitrary units across a
lamella at imposed cell length lz ¼ 3:245Rg for �N ¼ 0 (top)

and �N ¼ 10:235 (bottom). For comparison, thin solid line
shows cross-link distribution for nonstretched ideal (phantom)
chains [Eq. (7)].
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the ODT in the stress-free system (at Fz ¼ 0) is only
slightly shifted compared to the melt.

The exact value of the ODT depends on the network
topology and on the spatial dimension. For comparison,
we have also calculated the phase behavior for a three-
dimensional network with bcc topology (Fig. 4). The
resulting phase diagram is similar to the two-dimensional
one. The shift of the ODT is more pronounced, but still not
spectacular. Thus, we find that weak cross-linking does not
stabilize lamellar order efficiently, in agreement with the
simulation results of Lay et al. [41].

Finally, we discuss the elastic behavior of the network.
We focus on the three-dimensional case and calculate
Young’s moduli for our bcc topology. In the isotropic dis-

ordered state, the modulus is given by Bi ¼ 1:5C1=3=R2
g,

indicating that the network becomes stiff at high strand
density C. In the ordered state, the modulus depends on
the direction of applied stress. The elastic response to
stretching in the direction normal to the lamellae is stiffer
than in the isotropic case, Bn ¼ 2:12C. In contrast, the
system is soft in the parallel directions, with a modulus
that does not depend on C at all, Bk ¼ 1:36=R2

g. Hence, the

elastic penalty for stretching lamellae in plane is found to
be much smaller than the penalty for stretching them in the
normal direction. This is compatible with a prediction of
Panyukov and Rubinstein [39] based on a phenomenologi-
cal model for networks. On applying stress to a microphase
separated system with initially randomly oriented lamellae,
one thus expects the lamellae to be kinetically driven
towards aligning parallel to the applied stress. This was
indeed observed experimentally [53]. The true state of
lowest free energy, however, is one where the lamellae
are oriented normal to the stress, such that the (elongated)
copolymer strands are aligned parallel to the applied force.
Lamellae with parallel orientation can only reach this state
by copolymer reordering, which involves crossing an
energy barrier. Hence the parallel orientation might be
stabilized kinetically in many cases, even though the true
equilibrium state is one with normal orientation.

To summarize, we have presented a way to extend the
SCF theory to quenched polymer networks. It opens up a

wide range of new applications for the SCF approach,
such as the study of chemically or physically cross-linked
systems, or of liquid crystalline elastomers (using suitable
extensions of the SCF theory [14]). We have used the
approach to study the ODT in networks of diblock copoly-
mers, and the results were compatible with available simu-
lations, experiments, and phenomenological theories.
In this Letter, the theory was developed for regular

networks. The next step in future work will be to include
disorder, and disorder averages, e.g., within a coherent
potential approximation type approach. In this context, it
will be interesting to establish the connection to classical
field theories of networks based on the Deam-Edwards
approach [45–47], which focus on the process of generat-
ing topological disorder during cross-linking. Another
important issue is the effect of entanglements. The present
theory ignores topological interactions by construction
(since the monomers have no hard-core interactions).
However, the effect of entanglements may be similar to
that of physical cross-links, e.g., in interpenetrating net-
works [54–56], and it might be possible to treat them as
effective cross-links in some cases.
The present theory can also be used as a starting point

for simpler Landau-type expansions. For example, the
derivation of a random phase approximation theory [57]
for networks might give additional insight into the nature
of the phase transitions in the system.
This work was started during a visit to the Materials

Research Lab at UCSB Santa Barbara (U.S.). Inspiring
discussions with G. Fredrickson and his group are grate-
fully acknowledged.

[1] E. Helfand, J. Chem. Phys. 62, 999 (1975).
[2] G. Fleer, M. Cohen Stuart, J. Scheutjens, T. Cosgrove, and

B. Vincent, Polymers at Interfaces (Kluwer Academic,

Reading, MA, 1993).
[3] F. Schmid, J. Phys. Condens. Matter 10, 8105 (1998).
[4] M.W. Matsen, J. Phys. Condens. Matter 14, R21 (2002).
[5] M. Müller and F. Schmid, Adv. Polym. Sci. 185, 1 (2005).
[6] G. H. Fredrickson, The Equilibrium Theory of

Inhomogeneous Polymers (Oxford University, Oxford,
England, 2006).

0.5
Force Fz on a strand  [kBT/Rg]

0

2

4

6

8

10

χN

Ordered

Disordered

0 0.1 0.2 0.3 0.4 0 1 2 3 4
lz [Rg]

0

2

4

6

8

10

χN Coexistence

Homogeneous stretching

(b)(a)

FIG. 3 (color online). Phase diagram for the system of Fig. 2 in
the plane of �N versus (a) the average force acting on a strand Fz

and (b) the imposed cell length lz. Solid lines: coexistence.
Dashed lines: spinodals. Dotted line in (b): lamellar distance lz
of (metastable or stable) ordered state in the stress-free system.

Force Fzon a strand  [kBT/Rg]

0

2

4

6

8

10

χN

Ordered

Disordered

0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4
lz [Rg]

0

2

4

6

8

10

χN

Coexistence

Homogeneous stretching

(b)(a)

FIG. 4 (color online). Same as Fig. 3 for a three-dimensional
network with a bcc topology [see inset in (a)].

PRL 111, 028303 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

028303-4

http://dx.doi.org/10.1063/1.430517
http://dx.doi.org/10.1088/0953-8984/10/37/002
http://dx.doi.org/10.1088/0953-8984/14/2/201
http://dx.doi.org/10.1007/b136792


[7] M.W. Matsen and M. Schick, Phys. Rev. Lett. 72, 2660
(1994).

[8] M.W. Matsen, Macromolecules 28, 5765 (1995).
[9] C. A. Tyler and D. C. Morse, Phys. Rev. Lett. 94, 208302

(2005).
[10] X. H. He and F. Schmid, Phys. Rev. Lett. 100, 137802

(2008).
[11] R. B. Thompson, W. Ginzburg, M.W. Matsen, and A. C.

Balazs, Science 292, 2469 (2001).
[12] S.W. Sides, B. J. Kim, E. J. Kramer, and G.H.

Fredrickson, Phys. Rev. Lett. 96, 250601 (2006).
[13] J. U. Kim and M.W. Matsen, Macromolecules 41, 4435

(2008).
[14] D. C. Morse and G.H. Fredrickson, Phys. Rev. Lett. 73,

3235 (1994).
[15] Q. Wang, T. Taniguchi, and G.H. Fredrickson, J. Phys.

Chem. B 108, 6733 (2004).
[16] J.G. E.M. Fraaije, B.A.C. van Vlimmeren, N.M. Maurits,

M. Postma, O.A. Evers, C. Hoffmann, P. Altevogt, and
G. GoldbeckWood, J. Chem. Phys. 106, 4260 (1997).

[17] N.M. Maurits and J. G. E.M. Fraaije, J. Chem. Phys. 107,
5879 (1997).

[18] D.M. Hall, T. Lookman, G.H. Fredrickson, and S.
Banerjee, Phys. Rev. Lett. 97, 114501 (2006).

[19] L. Zhang, A. Sevink, and F. Schmid, Macromolecules 44,
9434 (2011).

[20] V. Ganesan and G.H. Fredrickson, Europhys. Lett. 55, 814
(2001).
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