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We demonstrate the ability of simultaneously determining a protein’s folding pathway and structure

using a properly formulated model without prior knowledge of the native structure. Our model employs

a natural coordinate system for describing proteins and a search strategy inspired by the observation

that real proteins fold in a sequential fashion by incrementally stabilizing nativelike substructures

or ‘‘foldons.’’ Comparable folding pathways and structures are obtained for the twelve proteins recently

studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E.

Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude faster. We find

that nativelike propensities in the unfolded state do not necessarily determine the order of structure

formation, a departure from a major conclusion of the molecular dynamics study. Instead, our results

support a more expansive view wherein intrinsic local structural propensities may be enhanced or

overridden in the folding process by environmental context. The success of our search strategy validates

it as an expedient mechanism for folding both in silico and in vivo.

DOI: 10.1103/PhysRevLett.111.028103 PACS numbers: 87.15.Cc, 87.15.hm

The discovery that a protein’s structure is determined by
its amino acid sequence has motivated efforts to replicate
the folding process in silico. A successful algorithm for
describing folding should enable predicting both the path-
way and structure, two intertwined issues that generally
have been treated separately. All-atommolecular dynamics
(MD) simulations can address both issues simultaneously
as demonstrated by a recent success in folding a dozen
small proteins [1]. Although remarkable, the simulations
require very specialized hardware and extensive amounts
of computing time. Our goal is to develop an alternate
approach that identifies basic folding principles and then
integrates them into a rapid, accurate, and physically
revealing algorithm.

Our algorithm, termed TERITFIX, is motivated by the
manner in which real proteins fold. Growing evidence
suggests that proteins fold along a limited number of
low-energy pathways [2–8], with the order of events
guided by a process termed sequential stabilization. Here,
nascent nativelike substructures serve as templates for the
formation of additional structure through the stepwise
addition of cooperative folding subunits or ‘‘foldons’’
[9–15]. We explicitly implement sequential stabilization
by using the information gleaned from earlier rounds of
folding simulations to guide folding in subsequent rounds.
The biasing is intended to assist the polypeptide up and
over the major free-energy barrier between the unfolded
and native states in a manner that replicates the authentic
folding process [16,17].

Our initial folding round involves �500 separate
Monte Carlo simulated annealing (MCSA) trajectories
that begin from a realistic denatured state ensemble
(DSE) [18], rather than from a state containing, for
example, biases from homology-based secondary structure
predictions. The best 25% (lowest energy) structures are
used to identify the preferred local and nonlocal interac-
tions for each residue in the form of a consensus secondary
structure and average inter-residue contacts and hydrogen
bonds. This information from a given round is used in the
next round of �500 trajectories to restrict the sampling
of backbone (’, c ) dihedral angles and energetically bias
the formation of the tertiary contacts and hydrogen bonds.
The iterative process incrementally generates additional
secondary and tertiary structure and hydrogen bonds as
the rounds proceed, producing a series of events that may
correspond to the genuine folding pathway.
We use a representation containing all backbone atoms

plus the C� carbons, a move set involving smart (’, c )
dihedral angle distributions, and a combination of single
(’, c ) pivots and local crankshaft moves [17]. Angles are
selected from a PDB-based coil library, contingent on the
chemical identity of the flanking residues. As secondary
structure information is deduced from prior rounds, angle
selection is correspondingly biased. Three energy func-
tions capture the chemical properties of the different amino
acids [16,17,19,20]. The first function includes a pairwise
additive, distance, orientation, and secondary structure
dependent statistical potential designed to promote the
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formation of chain topologies with hydrophobic cores.
The other two statistical potentials are multibody terms
designed to capture the properties of side chain burial and
hydrogen bonding.

Figure 1 displays the most nativelike structures obtained
from the TERITFIX simulations for the twelve proteins
studied by Lindorff-Larsen et al. [1] The calculations for
each protein take around 600 CPU hours on an Intel
2.6 GHz ‘‘Sandy Bridge’’ Xeon E5-2670 processor.
Using the same processor running NAMD, a single
10 �s MD trajectory would take around 3 000 000 CPU
hours/protein. TERITFIX produces an average root-mean-
square deviation (RMSD) from the native structure of

2:96� 1:33 �A for the centroids of the largest clusters,

compared to 2:07� 1:31 �A for the all-atom MD simula-
tions. TERITFIX generates centroids with lower RMSDs
for half of the proteins. By a significant 4.5 Å margin,
TERITFIX’s worst result is for NTL9, whereas this protein

produces MD’s best result (5.0 versus 0.5 Å for the cluster
centroids). The crystal structure of NTL9 appears with an
extra 12 residue helix which produces a helix-swapped
dimer. Without this extra helix, the structure has an
unusual, exposed hydrophobic face that probably contrib-
utes to TERITFIX’s difficulty in obtaining a good prediction.

Unlike most free modeling algorithms for predicting
structure, TERITFIX does not use fragments or invoke any
prior assumptions (or predictions from machine learning)
about the protein’s secondary structure. An additional fea-
ture distinguishing TERITFIX from prior approaches is the
generation of a de facto folding pathway that is determined
from the progressive appearance of structure in themultiple
rounds of MCSA simulations. As described elsewhere,
TERITFIX is sensitive enough to identify the non-native

interactions that lead to intermediates [21] and non-
native strand registry [22], results consistent with experi-
mental studies.
Calculations for the majority of the twelve fast-folding

proteins converge within the first 2–3 rounds of TERITFIX.
The folding pathway is depicted for each residue by plot-
ting the fraction of structures from the end of each round
for which the residue lies within 2 Å of the native structure
when the structures are aligned to the native structure by
the TM score, a global metric used to assess the quality of
structures [23].
The TERITFIX (Fig. 2) and all-atom MD pathways

(Fig. 3 in Ref. [1]) exhibit a similar order of structure
formation. The same regions of the sequence tend to
develop structure early in both classes of simulations,
further validating the ability of TERITFIX to identify gross
aspects of the folding pathways. Our definition of structure
formation is based on a global alignment to the native
structure, whereas the definition used by Lindorff-Larsen
et al. employs a local (five residue) metric of similarity to
the native structure. Consequently, their depiction of the
pathway is primarily sensitive to secondary rather than
tertiary structure formation. The two methods also yield
similar pathways when analyzed with the same local
metric (see Fig. S1 in the Supplemental Material [24]).
The order in which residues become nativelike in the

all-atom MD simulations correlates with their propensity
to form local nativelike secondary structure in the DSE [1].
The DSE of the MD simulations contains a high, and
potentially excessive amount of secondary structure in
an overly collapsed DSE [7,25,26], particularly for the �
repressor where denaturation is accompanied by the
unfolding of the helices according to multiple methods
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FIG. 1 (color online). Native structures produced by TERITFIX. The RMSDs of the centroids of the largest clusters and the best
structures are reported (values from the MD simulations in parentheses). Blue highlighting denotes the proteins where the TERITFIX

cluster centroids produce a lower RMSD.
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[17,27–30]. In contrast, TERITFIX simulations begin from
an unstructured DSE that reproduces the experimentally
observed NMR residual dipolar coupling patterns and
dimensions of expanded chains in the DSEs [18].
Figure S2 in the Supplemental Material [24] provides a
sample of five random initial structures from the TERITFIX’s
DSE for each of the twelve proteins. This difference likely
accounts for the early portions of the pathways produced
by TERITFIX having less helical structure, especially for �
repressor, Protein B and villin.

In spite of this disparity, the similarities between the
methods are notable. The collapsed environment in the
all-atom DSE present in the MD simulations likely pro-
motes secondary structure in the manner similar to what
TERITFIX produces as a consequence of templating onto

existing structure as the temperature is lowered in the
MCSA. The folding behavior is guided by similar environ-
mental clues in both methods, a feature that may account
for the general agreement between the two methods.

Our finding that TERITFIX produces similar folding
pathways despite starting with a much less structured
DSE cautions against overemphasizing the importance
of the unfolded state propensities in determining folding

pathways. TERITFIX’s success provides support to a more
expansive view where intrinsic local structural propensities
(which often favor non-native polyproline II conforma-
tions [18,31]) may be overridden by environmental context
as stable motifs sequentially interact and stabilize the
formation of additional structure in an incremental fashion.
For example, an otherwise unstable amphipathic helix or
hairpin is stabilized in the presence of hydrophobic sur-
faces, whether they arise semirandomly or through specific
interactions. We believe this view more accurately reflects
folding behavior [32] than one that emphasizes the forma-
tion of local nativelike structure in the DSE.
The TERITFIX algorithm contains all six of the neces-

sary physical interactions neeeded for a successful
algorithm, as recently proposed by Dill, [33] namely,
hydrogen bonds, van der Waals interactions, backbone
angle preferences, electrostatic interactions, hydrophobic
interactions, and chain entropy. In addition, we include a
backbone desolvation term to reflect the observation that
buried hydrogen bond donors and acceptors essentially
always form hydrogen bonds in native structures [34].
Accordingly, the term we introduce to recognize this 7th
feature penalizes buried amide nitrogens and carbonyl
oxygens with unsatisfied hydrogen bonds. This burial
term also serves to inhibit an unphysical, early, nonspe-
cific hydrophobic collapse [25,26,35].
However, these seven energetic terms alone are woefully

insufficient to locate the ‘‘needle in a haystack’’ native
structure within the vastness of conformational space.
Early folding steps in the cooperative folding of proteins
are uphill in free energy, and even productive conformations
unfold faster than they form on the reactant side of the
kinetic barrier. Hence, an explicit search strategy is essential
to guide the uphill exploration through conformational
space. Accordingly, we reinforce the process of sequential
stabilization by biasing (rather than enforcing) the backbone
sampling, hydrogen bonding, and tertiary contacts in an
iterative manner intended to mimic how real proteins tra-
verse the energy surface on the route(s) to the native state.
The success of this approach provides strong support for the
contention that sequential stabilization provides an expedi-
entmechanism for folding proteins both invitro and in silico.
The natural process of stepwise assembly in protein folding
might also explain successes of previous protein modeling
methods based on a combination of building blocks [36] and
evolutionary algorithms to increase native content [37].
We produce encouraging results for both native struc-

tures and folding pathways for a variety of proteins without
utilizing homology-based information. The overall simplic-
ity of the C�-level model (lacking side chain rotameric
states) decreases computational requirements by orders of
magnitude and provides a direct route to apply and validate
our understanding of the fundamental principles relevant
to protein folding, principles also expected to be crucial for
predicting protein recognition and conformational changes.

FIG. 2 (color online). Order of structure formation in
TERITFIX. The fraction of structures where a residue is within

2 Å of the native structure (fraction nativelike) for the various
rounds. The black line describes predictions when the starting
structures are generated from the DSE ensemble of structures
from the statistical coil library [17,18]. The native state
secondary structure is depicted above the graphs (helix ¼ red,
strand ¼ blue).
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