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The stability of the well-known Walker propagating domain wall (DW) solution of the Landau-Lifshitz-

Gilbert equation is analytically investigated. Surprisingly, a propagating DW is always dressed with spin

waves so that the Walker rigid-body propagating DW mode does not occur in reality. In the low field

region only stern spin waves are emitted while both stern and bow waves are generated under high fields.

In a high enough field, but below the Walker breakdown field, the Walker solution could be convective or

absolute unstable if the transverse magnetic anisotropy is larger than a critical value, corresponding to a

significant modification of the DW profile and DW propagating speed.
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Magnetic domain wall (DW) propagation in nanowires
has attracted considerable attention in recent years [1–5]
because of its fundamental interest and potential applica-
tions [2,3]. Field-driven DW dynamics is governed by the
Landau-Lifshitz-Gilbert (LLG) equation which has a well-
known Walker exact rigid-body propagation solution [1]
for a one-dimensional (1D) biaxial wire. This Walker
solution plays a pivotal role [6–8] in our current under-
standing of both current-driven and field-driven DW propa-
gation in magnetic nanowires. A genuine solution of a
physical system must be stable against small perturbations.
Although there is no proof of the stability of the Walker
solution and there are signs [9,10] that this solution may be
unstable, at least under certain conditions, the validity of
the Walker solution for a 1D wire is always taken as self-
evident. Any deviation in experiments or numerical simu-
lations is assumed to be attributed to the quasi-1D nature or
other effects [7]. On the other hand, applications of spin-
tronics devices require accurate description of DW motion
[11–14]. Thus, the stability of the Walker propagating DW
solution becomes vital in our understanding of DW propa-
gation along a magnetic wire.

In this Letter, by using a recipe that is based on a series of
recent advances in nonlinear dynamics theory, the stability of
the Walker exact DW solution is theoretically analyzed.
A propagating DW is always dressed with spin waves so
that the Walker solution is not stable against spin-wave
emission. In the low field region, only stern spin waves are
emitted while both stern and bow waves emerge under high
field. When the transverse magnetic anisotropy is larger than
a critical value and the external field is sufficiently high, the
solution is convective or absolute unstable, corresponding to
severe distortion of the propagating DW profile. This shall
lead to noticeable deviation of DW speed from the Walker
formula besides that the DW is dressed with spin waves.

To study the stability of the Walker propagating DW
solution under an external field, we consider the dimen-
sionless 1D LLG equation [15],

@ ~m

@t
¼ � ~m� ~heff þ � ~m� @ ~m

@t
: (1)

This LLG equation describes the dynamics of magnetization
~M ¼ ~mMs of a magnetic nanowire schematically shown in

Fig. 1, where ~m is the unit direction of ~M and Ms is the
saturation magnetization. With the easy axis along the wire
(ẑ direction) and the width and thickness being smaller than
the exchange interaction length, the DW structure tends to be
homogeneous in the transverse direction [16], i.e., behaves
effectively 1D.We are interested in the behavior of a head-to-
head DW under an external field. In Eq. (1), � is the phe-
nomenological Gilbert damping constant. The effective field

(in units ofMs) is ~heff ¼ Kkmzẑ� K?mxx̂þ A@2 ~m=@z2 þ
Hẑ, where Kk, K?, and A are, respectively, the easy axis

anisotropy coefficient, the hard axis anisotropy coefficient,
and the exchange coefficient.H is the externalmagnetic field
parallel to ẑ. The time unit is ð�MsÞ�1, where � is the
gyromagnetic ratio. Using polar angle � and azimuthal angle
’ for ~m as shown in Fig. 1, this LLG equation has a well-
known Walker propagating DW solution [1],

FIG. 1 (color online). Illustration of transverse head-to-head
DW of width � in a nanowire, with easy axis along ẑ and hard
axis along x̂. In the absence of external magnetic field (upper), a
static DW exists between two domains with mz ¼ �1. Under a
field parallel to the easy axis, the Walker propagating DW moves
towards the energy minimum state (mz ¼ �1) at a speed v while
the DW profile is preserved.
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sin2’wðz; tÞ ¼ H

Hc

; lntan
1

2
�wðz; tÞ ¼ z� vt

�
: (2)

Here Hc ¼ �K?=2 is the Walker breakdown field and � ¼
ðKk=Aþ cos2’wK?=AÞ�1=2 is the DWwidth which will be

used as the length unit (� ¼ 1) in the analysis below. v ¼
�H=� is theWalker rigid-bodyDWspeed that is linear in the
external field and the DW width, and inversely proportional
to the Gilbert damping constant. Solution (2) is exact for
H <Hc.

To prove the instability of solution (2) against spin-wave
emission, we follow a recently developed theory
(Sandstede and Scheel [17] and Fiedler and Scheel [18])
for stability of a general traveling front such as a propagat-
ing head-to-head DW shown in Fig. 1. Consider a small
deviation of the Walker solution, �w þ � and ’w þ ’ with
j�j � 1 and j’j � 1, the equations satisfied by � and ’
can be readily obtained from Eq. (1). In the moving frame
of the DW velocity v (with coordinate transformations of
z ! � � z� vt and t ! t), the linearized equations of �
and ’ in a two-component form of � � ð�; ’ÞT (super-
script T means transpose) are

d�

dt
¼ Lð�w; ’w; @=@�; @

2=@2�Þ�: (3)

L is an inhomogeneous operator, depending on � through
�w. The possible solutions of Eq. (3) of type� ¼ �1ð�Þe�t
define the spectrum of L. Similar to the energy spectrum
of a quantum system, � can be continuum and discrete.
The former is often called an essential spectrum while
the later point spectrum. The spectrum � can tell us
whether the propagating DW can destabilize the domains
by emitting spin waves into them. In terms of �0 �
ð�;’; @�=@�; @’=@�ÞT , Eq. (3) becomes a four-
dimensional first-order ordinary differential system,

d

d�
�0 ¼ �ð�Þ�0; �ð�Þ ¼ 0 I

B C

 !
; (4)

here I is a 2� 2 identity matrix, and 2� 2matrices, B and

C, have the following matrix elements: B11¼��=Aþ
ð1=2AÞðK?�2Kk�K?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p Þcos½2Gð�Þ��H tanh�=A,
where Gð�Þ is the Gudermannian function and � ¼ H=Hc;
B12 ¼ ð�� K?� tanh�Þ=ðA cosh�Þ; B21 ¼ � cosh�ð2�þ
K?� tanh�Þ=ð2AÞ; B22 ¼ ð��� K?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Þ=A; C11 ¼
�v�=A; C12 ¼ �v=ðA cosh�Þ; C21 ¼ v cosh�=A; C22 ¼
�2� v�=A. Obviously, Eqs. (4) and (3) have the same
spectrum since they are equivalent.

According to the theory of Refs. [17–21], the essential
spectrum is bordered by the Fredholm borders (defined
below) of (4) with � replaced by its two limits of � !
�1, denoted as �� � lim�!�1�. Since �� are constant

4� 4matrices, solutions of Eq. (4) with � ¼ �� are linear

combinations of �0e
��� with �� being complex numbers.

Pure plane wave solutions (�� ¼ ik) exist only when �

satisfies det½��ð�Þ þ ik� ¼ 0 with k 2 ð�1;1Þ. Each of
the two equations has two branches of allowed � labeled as
��
1;2ðkÞ, known as the Fredholm borders [17,18,20]. In

other words, Eq. (4) with � ¼ �þ (� ¼ ��) has a pure
plane wave solution when � is on �þ

1;2ðkÞ [��
1;2ðkÞ]. For

those � not on ��
1;2ðkÞ, each Eq. (4) with � ¼ �� has four

�� whose real parts are nonzero. If one uses (n�þ, n��) to
denote � with n�þ (n��) being the number of �� with
positive (negative) real part, then both �þ

1;2ðkÞ and ��
1;2ðkÞ

divide the � plane into three parts with ðn�þ; n��Þ ¼ ð1; 3Þ,
(2, 2), and (3, 1), respectively. According to Kato [21], the
essential spectrum of L must be in the regimes with nþ� þ
n�þ � 4. For � on boundaries ��

1;2, the associated eigen-

mode is plane wave (spin wave) while eigenmodes for �
not on the boundaries are spin wave packets.
In order to understand the numerical results in

Ref. [10], parameters of yttrium iron garnet (YIG) [14]
are assumed in our analysis with A ¼ 3:84� 10�12 J=m,
Kk ¼ 2� 103 J=m3, � ¼ 35:1 kHz=ðA=mÞ, and Ms ¼
1:94� 105 A=m. � ¼ 0:001 is used and K? is a varying
parameter. Figure 2 plots the essential spectrum for
K? ¼ 1 (in units of �0M

2
s that is about 25 times larger

than Kk). In the absence of an external field, the two

branches of the spectrum of �� are the same, �þ
1;2ðkÞ ¼

��
1;2ðkÞ, shown in Fig. 2(a). Since the spectrum encroaches

the right half plane, unstable plane waves shall exist and
spin-wave emission is expected. A similar conclusion was
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FIG. 2 (color online). Left: Essential spectrum (shadowed
regions) for H ¼ 0 (a) and H � 0:02Hc (b). The Fredholm
borders are ��

1;2ðkÞ. Solid border lines correspond to spin waves

with negative group velocities while the dashed border lines are
for the spin waves with positive group velocities. Propagating
DW wall emits stern waves in low fields [right of (a)], and stern
and bow waves in higher field (0:02Hc < H <Hc) [right of (b)].
The green dots are zero group velocity modes. K? ¼ 1 (in units
of �0M

2
s ) is used.
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also obtained in an early study [22], but for H >Hc. Solid
lines are for negative group velocity [determined by
Imð@�=@kÞ]; thus, these are stern modes. The dashed lines
indicate positive group velocity, corresponding to bow
modes. The green dots are zero group velocity points.
According to Fig. 2(a), all unstable modes have negative
group velocities so that DW can only emit stern waves in
the low fields. As the external field increases, �þ

1;2ðkÞ and
��
1;2ðkÞ will separate, and the area of essential spectrum in

the � plane becomes bigger and bigger [shadowed regimes
in Fig. 2(b)]. The green dots also move toward the Imð�Þ
axis and cross it at H � 0:02Hc [Fig. 2(b)]. Upon further
increase of H, the unstable modes have both positive and
negative group velocities although most of them have

negative ones. One shall have propagating DW to emit
both stern and bow waves. The stern waves should be
stronger than the bow waves as schematically shown in
the right-hand figure of Fig. 2(b). This is exactly what was
observed in numerical simulations for stern wave emission
in low field [9] and stern-and-bow wave emission in high
field [10]. In a realistic wire with damping, emitted spin
waves will be dissipated after a short distance and are hard
to observe in experiments.
The essential spectrum determines the instability of

domains. It says that DW propagation generates spin waves
in domains separated by the DW when the essential spec-
trum encroaches the right half of the � plane. Interestingly,
the instability of a DW profile is determined by the
so-called absolute spectrum and the branching points
[17–21,23–25]. To introduce the absolute spectrum and
the branching points, we recall that, for each � in the
complex plane, there are four ��

i (i ¼ 1, 2, 3, 4) for ��
ordered by their real parts as Reð��

1 Þ � Reð��
2 Þ �

Reð��
3 Þ � Reð��

4 Þ. � is said to belong to the absolute

spectrum if and only if Re½�þ
2 ð�Þ� ¼ Re½�þ

3 ð�Þ� or

Re½��
2 ð�Þ� ¼ Re½��

3 ð�Þ� [25,26]. The branching points

are special points in the absolute spectrum, denoted as
�sd, satisfying ��

2 ð�sdÞ ¼ ��
3 ð�sdÞ. These special points

correspond also to the modes of zero group velocity, or
nontraveling modes [25,26]. The instability of the absolute
spectrum happens when this spectrum encroaches the right
half plane, leading to severe modification of the propagat-
ing DW profile that, in turn, modifies the propagating
speed [5]. In addition, if the branching point(s) also
becomes unstable, then nontraveling modes will present
[25,26]. For K? ¼ 1, the absolute spectrum in the right
half � plane is generated by ��. Figure 3(a) shows two
branches ��

1;2. They are well separated by the real axis for

� ¼ 0:35 as shown in Fig. 3(a) (dashed curves) and no
absolute spectrum could be found in the right half plane.
As the field increases, the two branches get closer to each
other and at an onset field H2, depending on K?, two
branches tangent at the real axis and then separate again
in the horizontal direction, as shown in Fig. 3(a) for � ¼
0:36 (solid curves). At this moment, the absolute spectrum
begins to emerge on the real axis [the segment between two
branching points Sd1;2 (green solid dots)]. The dependence
of Reð��

2 Þ (dotted curve) or Reð��
3 Þ (dashed curve) on

Reð�Þ between these two points is shown in the inset of
Fig. 3(a) (solid segment).
According to Refs. [23–25], wave packets would

be emitted if the essential spectrum encroaches the
right half � plane. There are three types of instability
[17–20,23–25]. The instability is called transient (TI) if
the essential spectrum encroaches the right half plane and
the absolute spectrum is either in the left half plane or does
not exist. The propagating DWemits stern waves shown in
Fig. 3(b)i. The instability is called convective if both the
essential and the absolute spectrum encroach the right half
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FIG. 3 (color online). (a) ��
1;2 for K? ¼ 1, � ¼ 0:35 (dashed

curve) and 0.36 (solid curve). The absolute spectrum is between
two branching points Sd1 and Sd2 (green dots). Inset: Plot of
Reð��

2 Þ (dotted curve) and Reð��
3 Þ (dashed curve) vs Reð�Þ

between Sd1 and Sd2. At Sd1;2, �
�
2 ¼ ��

3 . (b) Graphical illus-

trations of three types of instabilities caused by unstable absolute
spectrum. Green curves indicate initial profiles of unstable
modes while the dotted (blue) and dashed (red) curves are their
later profiles. A transient instability (i) emits unidirectional
waves (propagating to the left). A convective instability
(ii) emits waves in both directions. An absolute instability
(iii) emits waves that do not travel in the moving frame, or
move with the DW. (c) Phase diagram of transient (TI) and
absolute or convective (AI or CI) instabilities. The boundary is
the bifurcation line between AI or CI and TI instabilities in K?
and � ¼ H=Hc plane. The bifurcation line is only plotted for
K? � K0

?; here K0
? � 0:085 at which H2 ¼ Hc (� ¼ 1). Note

that our analysis is valid for fields below the Walker breakdown
value.
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� plane. In this case, the emitted waves can propagate in
both directions as shown by Fig. 3(b)ii. For a convective
instability, if any branching point is also in the right half �
plane, the instability is called absolute. An absolute insta-
bility can then emit nontraveling (zero group velocity)
waves as illustrated in Fig. 3(b)iii. For the LLG equation,
since the absolute spectrum is the segment connecting two
branching points Sd1 and Sd2 [Fig. 3(a)], the absolute
instability (AI) and convective instability (CI) coexist. It
is known that transient instability is very weak [17,27].
Thus, we should not expect to have great physical con-
sequences. On the other hand, the absolute instability
moves with the DW, and causes the change of the DW
profile [25,27,28]. It is known [5] that field-induced DW
propagating speed is proportional to the energy damping
rate that is sensitive to the DW profile. Therefore, absolute
instability, which deforms the propagating DW profile,
shall substantially alter DW speed. This may explain large
deviation of DW speed from the Walker result near the
breakdown field in recent simulations [10]. This deviation
is subjected to experimental verification.

Figure 3(c) is the calculated phase diagram in K? and
� ¼ H=Hc plane. A transition from transient instability
(denoted as TI in the figure) to absolute or convective
instability (AI or CI) occurs at a critical field H2 as long
as K? >K0

? � 0:085 at which H2 ¼ Hc. It means no

absolute or convective instability exists for K? <K0
?,

and one shall not see noticeable changes in the famous
Walker propagation speed mentioned early. This may
explain why many previous numerical simulations on per-
malloy, which has small transverse magnetic anisotropy,
are consistent with the Walker formula.

It should be notid that absolute or convective instability
could occur as long as K? is above K0

?, which is 0.085

(about twice the easy-axis anisotropy) for YIG. The value
of K0

? depends on other model parameters. Before con-

cluding, we would also like to point out differences
between current findings and those of previous studies.
Reference [22] considers the spin-wave emission effect
on DW velocity above the Walker breakdown field, instead
of below the breakdown field. Spin wave emission was
numerically investigated in Refs. [9,10] for the zero damp-
ing case in details where, again, there is no Walker rigid-
body propagation solution (breakdown field is zero). Thus,
spin-wave emission is not surprising in this case because of
the continuous temporal periodic deformation of DWs. To
our knowledge, the only previous finding that is closer to
the results reported here is the early numerical study of
Ref. [10] that showed evidences of spin-wave emission
near, but below, the Walker breakdown field. However, it
is not clear in Ref. [10] whether spin waves could be
emitted far below the Walker breakdown field. Our find-
ings may also solve a long-term puzzle where the infinite
number of propagating DWs (soliton), existing at � ¼ 0
and H ¼ 0, are invalid when � � 0 and H � 0. The

answer may be that these solitons are dressed with spin
waves and their analytical forms are beyond our current
mathematical capability.
In conclusion, we showed that a Walker propagating

DW will always emit stern waves in a low field, and both
stern and bow waves in a higher field. The true propagating
DW is always dressed with spin waves. The emitted spin
waves shall be damped away during their propagation,
making them hard to detect in realistic wires. For a realistic
wire with its transverse magnetic anisotropy larger than a
critical value and when the applied external field is larger
than a certain value, a propagating DW may undergo
simultaneous convective and absolute instabilities. As a
consequence, the propagating DW will not only emit both
spin waves and spin wave packets, but also change signifi-
cantly its profile. Thus, the corresponding Walker DW
propagating speed will deviate from its predicted value,
agreeing very well with recent simulations. This finding is
subjected to experimental verification.
This work is supported by Hong Kong RGC Grants

No. 604109 and No. 605413 and the grant from NSF of
China.

*phxwan@ust.hk
[1] N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406

(1974).
[2] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,

190 (2008).
[3] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson,

D. Petit, and R. P. Cowburn, Science 309, 1688 (2005).
[4] G. S. D. Beach, C. Knutson, C. Nistor, M. Tsoi, and

J. L. Erskine, Phys. Rev. Lett. 97, 057203 (2006).
[5] X. R. Wang, P. Yan, J. Lu, and C. He, Ann. Phys.

(Amsterdam) 324, 1815 (2009); X. R. Wang, P. Yan, and
J. Lu, Europhys. Lett. 86, 67 001 (2009).

[6] Z. Li and S. Zhang, Phys. Rev. Lett. 92, 207203
(2004).

[7] A. Thiaville, S. Rohart, Ju. V. Cros, and A. Fert, Europhys.
Lett. 100, 57 002 (2012).

[8] J. Linder, Phys. Rev. B 87, 054434 (2013).
[9] R. Wieser, E. Y. Vedmedenko, and R. Wiesendanger, Phys.

Rev. B 81, 024405 (2010).
[10] X. S. Wang, P. Yan, Y.H. Shen, G. E.W. Bauer, and X. R.

Wang, Phys. Rev. Lett. 109, 167209 (2012).
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