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It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic
response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion
term 6 E - B with space and time dependent axion angle 6(r, r). Here we construct a minimal lattice model
of the Weyl medium and study its electromagnetic response by a combination of analytical and numerical
techniques. We confirm the existence of the anomalous Hall effect expected on the basis of the field theory
treatment. We find, contrary to the latter, that chiral magnetic effect (that is, ground state charge current
induced by the applied magnetic field) is absent in both the semimetal and the insulator phase.

We elucidate the reasons for this discrepancy.
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When a three-dimensional topological insulator (TT)
[1-3] undergoes a phase transition into an ordinary band
insulator, its low-energy electronic spectrum at the critical
point consists of an odd number of 3D massless Dirac
points. Such 3D Dirac points have been experimentally
observed in TIBi(S,_,Se,), crystals [4] and in
(Bi;_,In,),Se, films [5]. In the presence of the time rever-
sal (7") and inversion (P) symmetries, the Dirac points are
doubly degenerate and occur at high-symmetry positions in
the Brillouin zone. When T~ or P is broken, however, each
Dirac point can split into a pair of “Weyl points” separated
from one another in momentum k or energy E, as illus-
trated in Fig. 1. The resulting Weyl semimetal constitutes a
new phase of topological quantum matter [6-14] with a
number of fascinating physical properties including pro-
tected surface states and unusual electromagnetic response.

The low energy theory of an isolated Weyl point is given
by the Hamiltonian

hy(k) = by + vo - (k — b), (1)

where v is the characteristic velocity, o a vector of the
Pauli matrices, by and b denote the shift in energy and
momentum, respectively. Because all three Pauli matrices
are used up in Ay (k), small perturbations can renormalize
the parameters, by, b, and v, but cannot open a gap. This
explains why Weyl semimetal forms a stable phase [6].
Although the phase has yet to be experimentally observed,
there are a number of proposed candidate systems, includ-
ing pyrochlore iridates [7,8], TI multilayers [9—12], and
magnetically doped TIs [13,14].

The purpose of this Letter is to address the remarkable
electromagnetic properties of Weyl semimetals. According
to the recent theoretical work [15-18], the universal part of
their response is described by the topological 8 term,

2
Sp=— f dtdré(r, DE - B, )
8

(using 7 = ¢ = 1 units) with the “axion” angle given by
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0(r, 1) = 2(b - r — byt). 3)

This unusual response is a consequence of the chiral
anomaly [19-21], well known in the quantum field theory
of Dirac fermions. The physical manifestations of the 6
term can be best understood from the associated equations
of motion, which give rise to the following charge density
and current response,

p=5=b"B, C))

2
. e
T

Equation (4) and the first term in Eq. (5) encode the
anomalous Hall effect that is expected to occur in a Weyl
semimetal with broken T [7-10]. The second term in
Eq. (5) describes the ‘“chiral magnetic effect” [22],
whereby a ground state dissipationless current proportional
to the applied magnetic field B is generated in the bulk of a
Weyl semimetal with broken 2.
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FIG. 1 (color online). Low energy spectra in Dirac and Weyl
semimetals. (a) Doubly degenerate massless Dirac cone at the
transition from a TI to a band insulator. Weyl semimetals with
the individual cones shifted in (b) momenta and (c) energy. Panel
(d) illustrates the Weyl insulator which can arise when the
excitonic instability gaps out the spectrum indicated in (c). In
all panels, two components of the 3D crystal momentum k are
shown.
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The anomalous Hall effect is known to commonly occur
in solids with broken time-reversal symmetry. In the
present case of the Weyl semimetal, its origin and magni-
tude can be understood from simple physical arguments
[7-10] applied to the bulk system as well as in the limit of
decoupled 2D layers [18]. Understanding the chiral mag-
netic effect (CME) in a system with nonzero energy shift
bo presents a far greater challenge. The issue becomes
particularly intriguing in the case of a Weyl insulator,
illustrated in Fig. 1(d), which will generically arise due
to the exciton instability in the presence of repulsive inter-
actions and nested Fermi surfaces. According to Ref. [15],
CME should persist even when the chemical potential
resides inside the bulk gap. At the same time, standard
arguments from the band theory of solids dictate that filled
bands cannot contribute to the electrical current [23]. We
remark that using a different regularization scheme for the
Weyl fermions, Ref. [17] found that CME occurs in the
semimetal but is absent in the insulator, while Ref. [18]
concluded that it only occurs when b? — b3 = m3,, where
myp denotes the gap magnitude. Semiclassical considera-
tions [24], on the other hand, predict a vanishing electrical
current in the Weyl semimetal but nonzero *valley
current” proportional to B.

CME, if present, could have interesting technological
applications, as it constitutes a dissipationless ground state
current, controllable by an external field. Disagreements
between the various field-theory predictions, however,
raise important questions about the existence of CME in
Weyl semimetals and insulators. The implied contradiction
with one of the basic results of the band theory calls into
question whether the results based on the low-energy
Dirac-Weyl Hamiltonians are applicable to the real solid
with electrons properly regularized on the lattice. In this
Letter, we undertake to resolve these questions by con-
structing and analyzing a lattice model of a Weyl medium.
Using simple physical arguments and exact numerical
diagonalization, we confirm the existence of the anoma-
lous Hall effect as implied by Egs. (4) and (5) when b # 0.
We find, using the same model with b, # 0, that CME does
not occur in either the Weyl semimetal or insulator, in
agreement with arguments from the band theory of solids
which we review in some detail.

Our starting point is the standard model describing a 3D
TI in the Bi,Se; family [3,25], regularized on a simple
cubic lattice, defined by the the momentum space
Hamiltonian

Hy(k) =20 (s,sink, — s,sink,) + 21,0, sink, + o, M,
(6)

with o and s the Pauli matrices in orbital and spin space,
respectively, and M; = € — 2t), cosk,. For A, A, >0
and 2t < € < 6t, the above model describes a strong topo-
logical insulator with the Z, index (1;000). In the follow-
ing, we shall focus on the vicinity of the phase transition to

the trivial phase that occurs at € = 6¢, via the gap closing at
k=0.

It is easy to see that Weyl semimetal emerges when we
add the following perturbation to H,

H,(k) = byoys, + b (0,5, 0,5, 5,). @)

Nonzero b, breaks P but respects 7 while b has the
opposite effect. The two symmetries are generated as
follows, P: o, H(k)o, = H(—k) and T: syH*(k)s, =
H(—k). For simplicity and concreteness, we focus on the
case b = bz, which yields a pair of Weyl points at
k= *=(b,/2A,)z. The band structure of H = H, + H,
for various cases of interest is displayed in Fig. 2.

We now address the anomalous Hall effect by directly
testing Eq. (4). To this end, we consider a rectangular
sample of the Weyl semimetal with a base of (L X L) sites
in the x-y plane and periodic boundary conditions, infinite
along the z direction. The effect of the applied magnetic
field is included vi.a the standard Peierls substitution,
t— texp[2mi/ P [{ A - dl], where &y = hc/e is the
flux quantum, A is the vector potential, and the integral is
taken along the straight line between sites r; and r; of the
lattice. For B = 2B(x, y), we retain the translational invari-
ance along the z direction and the Hamiltonian becomes a
matrix of size 16L? for each value of k,. We find the
eigenstates ¢, . (x,¥) of H by means of exact numerical
diagonalization and use these to calculate the charge density

pry)=e > Db, (x> (8)

n€occ k,

FIG. 2 (color online). The band structure of the Weyl semi-
metal lattice model, displayed along the path k: (7,0, 7) —
(0,0,0) — (0,0, 7) — (77, 0, 77). (a) Doubly degenerate 3D Dirac
point when H; = 0 and € = 6¢. (b) Momentum-shifted Weyl
point for b = 0.9 and b, = 0. (c) Energy-shifted Weyl points for
b, =0 and by =0.7. (d) Weyl insulator with b, =0 and
by = 0.7 and the exciton gap modeled by taking € = 5.9¢. In
all panels, we take A = A, = 1.0, + = 0.5, and the energy is
measured in units of A. Red circles mark the location of the
Dirac (Weyl) points.
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Figure 3(a) displays p for the magnetic field configura-
tion B(x, y) = ®[8(x — L/4) — 6(x + L/4)]6(y), i.e., two
flux tubes separated by L /2 along the x direction. In accord
with Eq. (4), charge accumulates near the flux tubes,
although p(x,y) is somewhat broadened compared to
B(x, y). We expect the total accumulated charge per layer
60 to be proportional to the total flux,

t)e

where we have restored the physical units. Figure 3(b)
shows that this proportionality holds very accurately
when the flux through an elementary plaquette is small
compared to ®,. (When the flux approaches ®,/2, we no
longer expect Eq. (9) to hold because of the lattice effects.)
We have also tested the effect of a nonzero Dirac mass,
mp = € — 6t, and nonzero b, on the anomalous Hall
effect. These terms compete with b, and for m3, + b} >
b2, one expects the Hall effect to disappear [17,18]. This is
indeed what we observe in Figs. 3(c) and 3(d). We have
performed similar calculations for other field profiles
B(x, y) reaching identical conclusions for the anomalous
Hall effect.

We now address the chiral magnetic effect, predicted to
occur when by, # 0. We consider the same sample geome-
try as above, but now with uniform field B = ZB. In order
to account for possible contribution of the surface states,
we study systems with both periodic and open boundary
conditions along x. To find the current response, we intro-
duce a uniform vector potential A, along the z direction
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FIG. 3 (color online). (a) Charge density 6 p(x, y) accumulated
in the vicinity of the flux tubes ® = 0.01®,, in the Weyl semi-
metal. (b) Total accumulated charge per layer 6§ Q near one of the
flux tubes, in units of ¢/27 for indicated values of b,. Dashed
lines represent the expectation based on Eq. (9). We use A =
A, =t=05,€=23.0,L =14, and L, = 160 independent val-
ues of k,. Panels (c), (d) show the charge accumulations as a
function of b, in the presence of nonzero Dirac mass and by.
Parameters as above except by = 0.1, 0.2, 0.3 in (c) and € = 3.0,
2.9, 2.8, 2.7 for the curves in (d) from left to right.

(in addition to A, and A, required to encode the applied
magnetic field). The second-quantized Hamiltonian then
reads

H (A) = Y HP(k, — eA)c] ,orp (10)
k.

where «, B represent all the site, orbital, and spin indices.
The current operator is given by

IH (A,)
A

OH*P(k,)

= — . (11
A—0 e% ok, CraCep (D

J. =

Z Z

This leads to the current expectation value

J. = _€’§<¢n,k,

where ny indicates the Fermi-Dirac distribution and €,,(k,)
the energy eigenvalues of H(k,). We note that Eq. (12)
remains valid in the presence of the exciton condensate as
long as it is treated in the standard mean field theory.

We have evaluated J, from Eq. (12) for various system
sizes, boundary conditions, field strengths, and parameter
values corresponding to energy- and momentum-shifted
Weyl semimetals and insulators. In all cases, we found
J, = 0 to within the numerical accuracy of our computa-
tions, typically 68 orders of magnitude smaller than CME
expected on the basis of Eq. (5).

For an insulator, vanishing of J, comes of course as
no surprise. At 7 =0 and using the fact that
9D nr.|Pnr.) = 0, one can rewrite Eq. (12) as

dk, de,(k.,)
J=— K Oenks), 13
S =

GH(K.)
ok,

¢n,kz)nF[en<kz>], (12)

which vanishes owing to the periodicity of €,(k,) on the
Brillouin zone. More generally, for a system at nonzero
temperature and when partially filled bands are present, we
can rewrite Eq. (12) as

- dk. de,(k.)
D) [B o ekl a4

where the sum over n extends over all bands. By trans-
forming the k, integral in Eq. (14) into an integral over the
energy, it is easy to see that it identically vanishes for any
continuous energy dispersion €,(k.) that is periodic on the
Brillouin zone and for any distribution function that only
depends on energy. This reflects the well-known fact that
one must establish a nonequilibrium distribution of elec-
trons to drive current in a metal, e.g., by applying an
electric field. Given these arguments, we conclude that,
as a matter of principle, CME cannot occur in a crystalline
solid, at least when interactions are unimportant and the
description within the independent electron approximation
remains valid.
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FIG. 4 (color online). (a) Chiral current J, as a function of
energy offset b, for various values of the momentum cutoff A.
The dashed line indicates the field theory prediction Eq. (5).
(b) The slope dJ./db in units of en/2 as a function of cutoff
A. Slope 1.0 is expected on the basis of Eq. (5).

There are several notable cases when filled bands do
contribute currents. A superconductor can be thought of
as an insulator for Bogoliubov quasiparticles and yet, it
supports a supercurrent. This occurs because Bogoliubov
quasiparticles, being coherent superpositions of electrons
and holes, do not carry a definite charge and consequently,
the current cannot be expressed through Eq. (12). In quan-
tum Hall insulators, nonzero o, also implies nonvanishing
current. In the standard Hall bar geometry, used in trans-
port measurements, it is well known that the physical
current is carried by the gapless edge modes, not through
the gapped bulk. In the Thouless charge pump geometry,
the current indeed flows through the insulating bulk but this
requires a time-dependent Hamiltonian (the magnetic flux
through the cylinder is time dependent). Our considera-
tions leading to Eq. (12) are only valid for time-
independent Hamiltonians. Finally, there are known cases
[26] when the transition from Eq. (12) to Eq. (13) fails
because the Hamiltonian is not self-adjoint on the space of
functions that includes derivatives of ¢. This can happen
when the Hamiltonian is a differential operator but in our
case, H(k,) is a finite-size Hermitian matrix with a smooth
dependence on k,, which precludes any such exotic possi-
bility. In any case, our numerical calculations addressed
directly Eq. (12) so self-adjointness cannot possibly be an
issue.

Our considerations conclusively establish that anoma-
lous Hall effect [7-10], quantitatively consistent with the
prediction of the low-energy continuum theory [15-18],
occurs in realistic Weyl semimetals defined on the lattice.
The chiral magnetic effect [22], implied by the same con-
siderations via Eq. (3), however, runs afoul of the basic
results of the band theory and is found to be absent. Within
the low-energy continuum theory, the form of the axion
angle given Eq. (3) can be expected on the basis of Lorenz
invariance. In the real solid, this symmetry is broken at the
lattice scale so there is no fundamental reason why this
form should hold beyond the low-energy approximation.
To test this hypothesis, we have evaluated current J, from
Eq. (12) with a momentum cutoff, i.e., limiting |k,| < A in
the sum. As shown in Fig. 4, when A < 7, one indeed
obtains CME with a magnitude consistent with Eq. (5).

The current, however, rapidly vanishes as the cutoff
approaches the extent of the full Brillouin zone. We remark
that imposing such a cutoff has no significant effect on the
Hall effect calculation as long as A > |b,/2 .| because the
entire Hall response comes from this region of the momen-
tum space [7-10]. These considerations, thus, explain the
difference between the low-energy and lattice descriptions
of Weyl semimetals.

In closing, we note that if correct, the time dependence
of the axion angle implied by Eq. (3) would engender some
peculiar consequences. One of them follows from the
Witten effect [27,28], whereby a unit magnetic monopole
inserted into the axion medium carries a polarization
charge §Q = —e(n + 6/27) with n integer. In the Weyl
semimetal with a nonzero energy shift b, this charge 6Q
would grow linearly with time according to Eq. (3).
Although such “quantum time crystal” behavior has
been conjectured to arise in certain interacting systems
[29], it is not clear by what mechanism it would occur in
the ground state of a noninteracting semimetal. Our find-
ings indeed confirm the absence of this behavior in the
Weyl semimetal described by a natural lattice Hamiltonian.
It remains an open question whether this fascinating phe-
nomenon can be realized in another quantum system.
Another interesting problem which we leave for future
investigation is finding the regularization scheme for the
low-energy theory that would match the results of our
lattice calculation.
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